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Uncertainty in technological learning is a crucial factor in planning research, development, and demonstration
(RD&D) strategies. Nevertheless, most previous work either models technological change as deterministic or
R&D accounts for uncertainty without fully capturing the recourse feature of the problem. This paper improves upon
Stochastic dynamic programming these approaches by developing a real options-based stochastic dynamic programming method for valuing and
Eﬂa;::;e:;Il’t;;;ab';?t;equemamn planning low-carbon energy RD&D investment and is the first of its kind to disaggregate the effects of R&D and
Endogenous technological change learning-by-doing. This simplified model captures the relevant features of the problem and provides general

insights on RD&D strategy under technological uncertainty. Results indicate that imminent deployment, high
cost, lower exogenous cost reductions, and lower program funds all promote R&D spending over learning-by-
doing, since under these circumstances a breakthrough, rather than slow and consistent cost reductions, will
render the program successful.

1. Introduction

Accounting for uncertainty in technological learning is crucial to
technology development strategies. Nevertheless, most research treats
technological change as deterministic, either exogenously or with cost
decreasing as an endogenous function of installed capacity. Uncertainty
is an especially important attribute for technology strategies in the
clean energy sector, given the increased prominence of climate miti-
gation on policy agendas and the prevalence of early-stage energy
technologies, which with further development could reduce the cost of
complying with such policies. Historically, the outcome of research,
development, and deployment (RD&D) of energy technologies has been
highly uncertain: some developmental technologies achieve large cost
reductions and are commercialized successfully, while others never
reach commercialization despite extensive investment. Accurate models
of decision making under uncertainty in technology development in-
corporate the ability to accelerate or abandon the technology based on
the performance of the RD&D program and the ability to invest in a
technology with low expected value but a small probability of a high-
value breakthrough.

This paper presents a novel method for valuing RD&D investments
under uncertainty with specific application to low-carbon energy
technologies. A climate policy is assumed to take effect at a known date
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in the future, motivating RD&D investment to prepare a single tech-
nology for deployment once the policy is enforced. If the technology is
cost-effective by this time, it is deployed; otherwise, it is abandoned. In
absence of an RD&D program, valuing this investment opportunity is
similar to valuing a European put option, and it therefore fits a real
options framework.” Real options is frequently used in the energy sector
to value capital investment decisions under uncertainty in factors such
as fuel costs and electricity prices (see Dixit and Pindyck (1994) for a
thorough, general treatment of real options theory and applications).
Real options has been applied to valuing RD&D investments, though
never before in a model where RD&D spending directly influences the
cost of the developmental technology. The put-option framework is
appropriate for the case in which the investor anticipates a fixed
amount of time in which to develop a technology to prepare for a
disruptive event such as a policy shift. In this paper, the framework is
augmented by the assumption that the investor can invest in a combi-
nation of R&D, which encompasses riskier and more fundamental in-
novation projects, and learning-by-doing (LBD), which is achieved
through demonstration projects and operational experience, in order to
drive down the cost of the technology. This paper is the first to separate
the effects of R&D and LBD in an analytical model to yield insight into
optimal investment in the two modes of development. The framing as a
European put option avoids a typical result of real options analyses

2 A European put option represents the right, but not the obligation, to sell an asset for a given price at a given time in the future. While options theory originally
arose in the context of the stock market, the field of real options adapts this theory to value capital investment decisions under uncertainty.
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involving options with infinite time horizons, which is to postpone in-
vestment beyond what may be realistic in order to resolve uncertainty.

When change in energy technologies has been included en-
dogenously in previous decision support models, it is most often re-
presented as deterministic learning curves that express cost as a log-
linear function of installed capacity. Learning curves are characterized
extensively for the energy sector (e.g. Neij, 2008 and Junginger et al.,
2008). Studies that endogenize them with cumulative installed capacity
as a decision variable include Riahi et al. (2004) and McFarland and
Herzog (2006) for carbon capture and sequestration (CCS), Rao et al.
(2006) and Barreto and Kypreos (2004) for a portfolio of conventional
and renewable energy technologies, Bosetti et al. (2009) for an ab-
stracted “breakthrough” technology, and Miketa and Schrattenholzer
(2004) for two-factor learning curves for wind and solar power. Two-
factor learning curves treat cost as a function of both R&D and LBD, and
form the basis for the cost model used in this work.

These prior studies contain sophisticated models of uncertainty in
other aspects of the climate and economy and often neglect uncertainty
in technological change due to computational limitations. However,
they fail to capture important aspects of the RD&D investment problem
such as the value of exploratory investment in technologies with low
expected value but a small probability of a breakthrough, the possibility
that cost estimates could rise over time, and the ability to update the
investment strategy frequently as new information is revealed. Methods
incorporating risk factors (e.g. Griibler and Gritsevskyi, 2002) or risk
constraints (e.g. Ma, 2010) model risk aversion by adding a penalty cost
for greater variability in learning rates, but do not capture the recursive
aspect of the investment problem or the value of making early-stage
decisions that perform well over a broad range of future outcomes.

Since RD&D strategies operate over long periods of time, can be
revised repeatedly, and are subject to significant uncertainty, stochastic
dynamic programming (SDP) provides an appropriate framework for
analyzing such strategies. Most previous applications of SDP to RD&D
investment have used numerical optimization methods, for which
computational intensity substantially limits the number of time steps
and technology development outcomes (e.g. Bosetti and Tavoni, 2009).
Webster et al. (2012) and Santen (2012) circumvent these limitations
by developing an approximate dynamic programming method to ana-
lyze decision making under technological uncertainty, and their results
demonstrate that a two-stage decision model may not be sufficient to
capture the value of RD&D since it is path-dependent and operates over
an extended period of time.

While models that apply numerical optimization methods to pro-
blems with few discrete outcomes and time steps can offer insight into
specific cases, they may not produce generalizable results. This paper,
in contrast, uses a stylized model to examine RD&D investment under
uncertainty, in which the optimization step is performed analytically
and the resulting partial differential equation solved numerically. This
model allows for arbitrarily many time steps and a continuous re-
presentation of uncertainty and generates results that are applicable
across a range of similar problems. Previous SDP-based approaches to
valuing RD&D that make use of analytical techniques have been framed
as real options analyses. Pindyck (1993) proposes an SDP-based method
for project valuation and illustrates it with an example from the nuclear
power industry in the early 1980s, accounting for both technical and
market uncertainty. Huchzermeier and Loch (2001) develop an SDP-
based real options model for investment decisions in a single tech-
nology under multiple uncertainties and show that the value of flex-
ibility is reduced if uncertainty is resolved only after decisions are
made. Siddiqui and Fleten (2010) model investment in an unconven-
tional energy technology (UET) and a more established renewable en-
ergy technology, in which the investor has the opportunity to pay a
lump sum to start the UET down a learning curve that follows geometric
Brownian motion with negative drift. Davis and Owens (2003) use a
closely related method to value investment in a renewable energy
technology with uncertainty in the cost of non-renewable energy, the
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remaining cost of developing and switching to the renewable energy
technology, and the cost of the developed renewable energy tech-
nology.

Results of real options analyses typically encourage postponing
technology deployment to wait for more information. In the case of
future climate policy, deployment of the technology may be largely
driven by the disruptive arrival of a climate policy, a phenomenon
captured more realistically in this paper than in previous work.

This paper, unlike previous studies, models the explicit effect of
continued RD&D investment on cost with the constant ability to update
the investment decision, in anticipation of future climate policy en-
actment and simultaneous deployment of the technology. The con-
tinuous cost distribution captures a realistic range of possible tech-
nology development outcomes. Unlike previous analytical SDP
approaches to RD&D investment, this paper disaggregates the effect of
the RD&D program into R&D and LBD. R&D assumed to be less effective
on average than LBD but more likely to generate a high-value break-
through. The simplified model-while necessarily stylized—captures key
features of the problem, allows for broad exploration of the parameter
space, is generalizable across similar cases, and is much less computa-
tionally intensive than strictly numerical approaches.

2. The model

The RD&D investment problem is framed as a maximization of the
value of the technology less cumulative spending at time T, accounting
for uncertainty as well as changes in cost exogenous to the RD&D
program. The value maximization problem is expressed as

max{E[ fo ! —(IR(t) + IL(t))e‘”dI + e-rsz(cT)H

el ey
in which Iz and I are the rates of spending on R&D and LBD (with a
budget constraint Iy + I < q), r is the discount rate, T is the end of the
RD&D investment period and the potential deployment time of the
technology, and t is a time variable that takes values between 0 and T.
The function (Cr) is the net present value (NPV) of deploying the
technology at time T, or O if the NPV is negative.

I consider a single technology with an associated cost, $C/tCO,, of
using the technology for carbon mitigation. C is assumed to follow an
Itd process with a drift and volatility that are functions of the rate of
spending on R&D and learning-by-doing (LBD):

d?c = —(/IRIR + AL+ oz)dt + e U)2dzg + 7, (I)2dz; + odw
(2)

in which A and 4, represent the expected effectiveness of R&D and LBD
spending in reducing cost, such that greater effectiveness tends to result
in lower carbon-mitigation cost C. These parameters are scaled in the
model by the rate of investment, and the products AxIz and A I, de-
termine the rate of change in C in a way that is quantitatively similar to
an interest rate. The parameter « is the exogenous drift rate of cost due
to factors such as spillovers and changes in input costs, and y; and ¥,
represent the standard deviation of the effectiveness of R&D and LBD
spending (for brevity, henceforth termed uncertainty in R&D/LBD ef-
fectiveness). It is assumed that A; > Ag; a basis for this assumption is
Lohwasser and Madlener (2010), who estimated a two-factor learning
curve for CCS by developing an analogy with flue-gas desulfurization.
Lohwasser and Madlener (2010) found an LBD rate of 7.1% and a
learning-by-researching (here referred to as R&D) rate of 6.6%, using
the number of patents as the independent variable for learning-by-re-
searching. It is further assumed that y, >y, indicating greater un-
certainty in the outcome of R&D investment versus LBD investment.
The parameter o represents exogenous uncertainty, and dzg, dz;, and
dw are increments of standard Brownian motions.

Eq. (2) implies that C can never drop below 0, as fits a cost function,
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