
Journal of Process Control 70 (2018) 80–95

Contents lists available at ScienceDirect

Journal  of  Process  Control

journa l homepage: www.e lsev ier .com/ locate / jprocont

Set-membership  nonlinear  regression  approach  to
parameter  estimation
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a  b  s  t  r  a  c  t

This paper  introduces  set-membership  nonlinear  regression  (SMR),  a new  approach  to  nonlinear  regression
under  uncertainty.  The  problem  is  to determine  the  subregion  in  parameter  space  enclosing  all  (global)
solutions  to  a nonlinear  regression  problem  in  the presence  of bounded  uncertainty  on  the  observed
variables.  Our  focus  is  on  nonlinear  algebraic  models.  We  investigate  the  connections  of SMR  with  (i)  the
classical  statistical  inference  methods,  and (ii) the  usual  set-membership  estimation  approach  where  the
model predictions  are constrained  within  bounded  measurement  errors.  We  also  develop  a computa-
tional  framework  to  describe  tight  enclosures  of  the  SMR  regions  using  semi-infinite  programming  and
complete-search  methods,  in the  form  of likelihood  contour  and  polyhedral  enclosures.  The  case  study
of a parameter  estimation  problem  in microbial  growth  is  presented  to  illustrate  various  theoretical  and
computational  aspects  of  the  SMR approach.
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1. Introduction

Mathematical models capable of accurate prediction of physical
phenomena have proved to be invaluable tools for engineers and
scientists. In the area of process systems engineering, they routinely
support the design, control and optimization of production pro-
cesses, as a means of improving their economical profitability and
reducing their environmental footprint. A majority of these models
are nonlinear and contain adjustable parameters that need esti-
mating from available experimental data, or else from other, more
fundamental, mathematical descriptions. In this context, parame-
ter estimation turns out to be a key step in the verification, and
subsequent use, of the mathematical models.

Most commonly, parameter estimation in nonlinear models is
cast as a nonlinear regression exercise, where selected parame-
ter values are adjusted so that the model predictions match the
available observations as close as possible, for instance in the least-
squares or maximum-likelihood sense [1–4]. In order to avoid for
the resulting parameter estimates to be biased, one can account for
measurement errors in all of the variables, both independent and
dependent variable observations, by following the so-called errors-
in-variables approach [5,6]. This problem has been widely studied
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from a computational standpoint over the past decades, including
the development of rigorous global optimization approaches for
overcoming convergence to local optima [7,8].

Of course, there is more to model identification than just deter-
mining values for the unknown parameters. Systematic procedures
have been devised to support the development and statistical
verification of process models, which include testing structural
identifiability, designing experiments for improved parameter pre-
cision, and inferring parameter confidence [9–12]. The focus in this
paper is on the latter aspect, namely characterizing subregions in
parameter space wherein the parameter values can be expected
to lie. Other applications of such parameter confidence regions are
in design under uncertainty [13,14], robust model predictive con-
trol [15–17], robust monitoring [18,19], and robust optimal design
of experiments [20–22], to name but a few. For the scope of this
paper, the emphasis is on models described by algebraic equations,
but these ideas can be extended to dynamic or distributed models
described by differential equations too.

Accounting for model mismatch and uncertain observations
within the regression problem has spawned several schools of
thought. Statistical approaches can be broadly classified as frequen-
tist or Bayesian. The former seek to determine confidence regions
around the regressed parameter values, typically a maximum-
likelihood estimate, considered as the ‘true’ parameter values
[1,2,4]. By construction, a 100(1 − ˛)% frequentist confidence
region comprises 100(1 − ˛)% of the parameter values that would
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be obtained upon repetition of the parameter estimation using
(hypothetical) new observations, considered as random variables.
Approximate confidence regions, for instance based on the Wald
test or the likelihood-ratio (LR) test, are known to converge to
the exact confidence region in the limit of an infinite number of
observations under certain conditions. Process modeling environ-
ments such as gPROMS and Aspen Custom Modeler have been
relying on linear approximation and the Wald test to determine
ellipsoidal confidence regions, a computationally efficient proce-
dure for problems having several dozen unknown parameters, but
one which may  produce inaccurate results with large measure-
ment errors and model mismatch or few measurement points.
Confidence regions based on the LR test have been shown to yield
superior approximations, but are computationally more involved
since the corresponding parameter regions are complex sets in
general (e.g., nonconvex, not simply connected) [23,24].

In practice, the term 100(1 − ˛)% confidence region is often
misused to refer to the range of parameter values that include
100(1 − ˛)% of their probability distribution [25]. This descrip-
tion corresponds to so-called 100 (1 − ˛)% credible regions instead,
which are defined in the Bayesian inference approach [26]. Bayesian
estimation uses the available observations to construct a proba-
bility distribution of the parameters, called posterior distribution,
based on a likelihood function and a prior probability distribution of
the same parameters. In essence, this approach thus considers the
unknown parameter values as random variables. Sampling-based
techniques such as Markov-Chain Monte-Carlo (MCMC) [27,28]
provide a means of constructing (approximate) credible regions,
although the computational effort can become prohibitive for prob-
lems having upwards of 10 parameters [29]. A most probable
estimate can be determined from the posterior distribution, which
also corresponds to a maximum-likelihood estimate for a flat prior.
Albeit classical frequentist and Bayesian inference regions can be
reconciled in special cases, no equivalence can be drawn in general
since Bayesian inference incorporates problem specific contextual
information from the prior distribution, whereas frequentist infer-
ence is solely based on the data; see, e.g., [30, Chapter 5]. The debate
on whether to use frequentist or Bayesian statistical inference con-
tinues to this day [25,31], but its intricacies are beyond the scope
of this paper.

Regardless of whether a mathematical model’s structure is cor-
rect or not, a frequentist confidence region will normally converge
to the maximum- likelihood estimate as the number of obser-
vations increases. Likewise, a Bayesian posterior will normally
converge to a point mass that corresponds to a most probable esti-
mate, i.e., a point that maximizes the probability of the data given
the (possibly wrong) model. An interesting alternative to these
statistical approaches is set-membership estimation (SME). The tra-
ditional SME  setting, also called guaranteed parameter estimation
(GPE), seeks to determine the set of all possible parameter val-
ues for which a model’s predictions are consistent with a set of
observations subject to bounded errors [32–34]. The fact that this
approach does not require a statistical description of the observa-
tion errors, solely bounds, is not only less demanding, but also more
realistic in many practical applications, including biological sys-
tems where the measurements are often scarce and subject to large
errors [21]. Beside parameter estimation, the distinctive yes-or-no
answer provided by set-membership techniques can also be used
for model inconsistency detection [35,36]. One caveat here is that
the set of feasible parameter values may  be empty in the presence
of measurement outliers or due to an inadequate description of
the measurement noise, thus calling for remedial strategies [37,38].
Another key challenge in nonlinear set-membership estimation is
describing the feasible parameter set accurately, while remain-
ing computationally tractable. This challenge is in fact similar to
the one faced by aforementioned statistical inference methods for

describing parameter confidence sets, and it may  explain why set-
membership estimation has not reached a wider diffusion to this
day. Existing computational strategies are limited to problem with
downwards of a dozen parameters. They range from approximation
using sampling-based methods, including stochastic search [39],
support vector machines (SVM) [40] and MCMC  [41]; to rigorous
complete-search methods based on interval analysis and other set
arithmetics [42–44]; and to semidefinite relaxation techniques for
semi-algebraic problems [45,46].

This paper introduces set-membership regression (SMR), a new
approach to nonlinear regression. The SMR  problem seeks to
determine the subregion in parameter space enclosing all (global)
solutions to a nonlinear regression problem in the presence of
bounded uncertainty on the observed variables. By contrast with
the traditional SME  setting seeking for parameter values to satisfy
certain feasibility constraints, the SMR  approach method seeks for
parameter values to satisfy an optimality condition. To the best
knowledge of the authors, this problem has not been investigated
in the general nonlinear setting so far. Milanese [47] studied opti-
mality and convergence properties of least-squares estimates in
the presence of unknown bounded disturbance, but their theo-
retical work is limited to linear problems. This paper sets out to
investigate the connections of SMR  with both statistical inference
and set-membership estimation approaches for nonlinear alge-
braic models. Another principal contribution is a computational
framework to describe tight enclosures of the SMR  regions using
complete-search methods.

The rest of the paper is organized as follows. Section 2 starts by
reviewing classical results from both areas of statistical and set-
membership estimation. Section 3 introduces the SMR  approach
and analyzes its properties, after which numerical solution strate-
gies are developed in Section 4. A simple case study is used
throughout Sections 2–4 to illustrate the main concepts and results.
Section 5 presents a more challenging estimation problem in micro-
bial growth to demonstrate the SMR  approach. Finally, Section 6
concludes the paper and discusses future research opportunities.

2. Background

Our focus throughout this paper is on explicit models in the form

y = g(p, u),

where p ∈ R
np is the vector of unknown parameters; and (u, y) ∈

R
nu × R

ny is the vector of observed variables, denoted collectively
by x:=(u, y) ∈ R

nx for convenience. Notice that u and y often cor-
respond to (either controlled or uncontrolled) input and output
variables, respectively, in a practical setup. It is also worth pointing
out that many of the concepts and methods presented herein can
be applied to models described by implicit equation systems, such
as f(p, x) = 0, and models comprised of differential equations too.

Suppose that nm observations xm
k

:=(um
k
, ym
k

) of the input–output
variables are available, and assume that all of these observation
errors are independent and described by the probability density
functions p(·|  ) parameterized by  . In the error-in-variables
approach [6], the reconciled values u1, . . .,  unm for the observa-
tions are estimated alongside the unknown model parameters p.
The joint probability of the prediction-observation mismatch in all
data points for the parameter values �:=(p, u1, . . .,  unm ) ∈ R

n� is
described by the following likelihood function:
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with ıuk:=uk − um
k

and ıyk:=g(p, uk) − ym
k

. The error-in-equation
approach instead, considers the input measurements um

k
to be
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