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a  b  s  t  r  a  c  t

We  present  a new  method  for  adaptively  updating  nonlinear  model  predictive  control  (NMPC)  hori-
zon  lengths  online  via  nonlinear  programming  (NLP)  sensitivity  calculations.  This approach  depends
on  approximation  of  the  infinite  horizon  problem  via  selection  of  terminal  conditions,  and  therefore
calculation  of  non-conservative  terminal  conditions  is  key.  For  this,  we also present  a new  method  for
calculating  terminal  regions  and costs  based  on the  quasi-infinite  horizon  framework  that  extends  to
large-scale  nonlinear  systems.  This  is accomplished  via  bounds  found  through  simulations  under  lin-
ear quadratic  regulator  (LQR)  control.  We  show  that  the resulting  controller  is  Input-to-State  practically
Stable  (ISpS)  with  a stability  constant  that  depends  on  the  level  of  nonlinearity  in the  terminal  region.
Finally,  we  demonstrate  this  approach  on  a  quad-tank  system  and  a large-scale  distillation  application.
Simulation  results  reveal  that  the proposed  approach  is  able  to achieve  significant  reduction  in average
computation  time  without  much  loss in  the performance  with  reference  to fixed  horizon  NMPC.

©  2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Model predictive control (MPC) has seen a great deal of success
in the chemical industry, as it can naturally handle multiple-input-
multiple-output systems with operating constraints. A survey of
industrial applications of MPC  is given in [16], and a thorough
theoretical treatment of MPC  is given in [21]. Nonlinear model
predictive control (NMPC) has the added advantage of being able
to capture nonlinear effects and thus provides higher accuracy
across a wide range of states [5]. Fast NMPC implementations for
large systems are enabled by noting that an exact solution of the
associated nonlinear programming (NLP) problem is not necessary
[14,28,25,27].

Terminal conditions are an important aspect of ensuring the sta-
bility of NMPC. However, calculating terminal constraints and costs
for the nonlinear case is not straightforward. In [2], terminal con-
ditions are calculated via the construction of a linear differential
inclusion (LDI) and the solution of a linear matrix inequality. How-
ever, the construction of the LDI can be prohibitively difficult for
large-scale systems.

In [1], a quasi-infinite horizon approach is proposed in which
the terminal cost is computed based on a controller for the lin-
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earized system, and the terminal region represents a region of
attraction for the linear controller applied to the nonlinear system.
This method was  applied to an experimental quad-tank system in
[17] and further extended in [18]. Also, this method was devel-
oped for discrete time models in [10,19], which eliminates the need
for a small discretization step upon implementation. These meth-
ods require finding a Lipschitz constant for the nonlinear part of
the system or solving a series nonconvex optimization problems
to global optimality, either of which makes application to a large
system cumbersome. Instead, we propose a method of bounding
only the higher order nonlinear effects of the system via simula-
tions under linear quadratic regulator (LQR) control. This appears
more practical and leads to a method of calculating terminal con-
ditions that is scalable. Furthermore, we formulate terminal cost
to approximate the infinite horizon problem rather than give it a
strict upper bound. This is key for stability considerations later on.

We then consider another major issue in NMPC design, which
is the selection of horizon length. In particular, we  note a signif-
icant trade-off in this choice. The longer the horizon length, the
larger the computational burden of the NLP  that is solved online.
In this case, control actions may  be delayed, leading to degrada-
tion in control performance. The shorter the horizon, the smaller
the region of the state space from which the terminal region is
N-reachable. In this case, the problem solved online may  become
infeasible. Moreover, we recognize that this trade-off can vary with
the state of the system. Thus, it is desirable to have a method for
updating horizon lengths online. Typically, horizon lengths must be
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chosen to be conservatively long for practical applications in order
to ensure feasibility of the dynamic optimization problem at every
iteration. Furthermore, sampling intervals are limited by the worst
case solve-time. Formulating an effective method for updating hori-
zon lengths online is an important step towards overcoming these
drawbacks of NMPC.

One method for updating horizon lengths is known as vari-
able horizon MPC  [22,23]. Here, the horizon length is treated as a
decision variable in the optimization problem. However, in the non-
linear case, this leads to solving a mixed-integer nonlinear program
(MINLP) online, which is currently impractical for large systems
with significant nonlinearities.

Another approach is adaptive horizon NMPC (AH-NMPC), where
the prediction horizon is updated online based on some rule. A spe-
cial case of this approach is shrinking horizon NMPC [4], but in the
more general case we allow for an expanding horizon as well as
changes in the horizon of multiple step lengths. The methodology
shown in [8] is also similar, except that our method does not neces-
sitate knowledge of the required horizon length at a given time
point. Instead, we propose a new method by which horizon lengths
may  be chosen in real time based on the current state. Regardless of
how the finite horizon length varies from timepoint to timepoint,
the terminal conditions serve to approximate the infinite horizon
problem. We  also propose a method that utilizes sensitivity updates
from sIPOPT [15] in order to choose a sufficient horizon length in
real time. We  show that, under reasonable assumptions, AH-NMPC
is Input-to-State practically Stable (ISpS).

In this work we combine the technologies of quasi-infinite hori-
zon NMPC and adaptive horizon NMPC in order to provide a flexible
NMPC formulation that retains stability properties with an adap-
tive horizon length. Finally, we demonstrate our methods on a
quad-tank example and a large-scale distillation example.

2. Notation and definitions

We  consider the system:

xk+1 = fp(xk, uk, wk) (1)

with the model:

xk+1 = f (xk, uk) := fp(xk, uk, 0) (2)

where xk ∈ X ⊂ R
nx is a vector of states that fully defines the model

at time k, uk ∈ U  ⊆ R
nu is the vector of control actions implemented

at time k, and wk ∈ W ⊂ R
nw is the vector of disturbances that are

realized at time k. Note that X is not a state constraint set to be
added to the optimization problem, but rather the set on which
the system is defined and ultimately the region of attraction of the
controller. We  use | · | as the Euclidean vector norm and ‖ · ‖ as the
corresponding induced matrix norm. R  is the set of real numbers, Z

is the set of integers, and the subscript + indicates their nonnega-
tive counterparts. Further, we assume that f (x, u) : R

nx+n+u → R
nx

is twice differentiable in x and u with Lipschitz continuous sec-
ond derivatives. We  also make the following basic assumptions and
definitions.

Assumption 1. (A) The set X ⊂ R
nx is control positive invariant for

f ( · , · ), that is, there exists u ∈ U  such that f (x, u) ∈ X  holds for all
x ∈ X.  Furthermore, X contains the origin in its interior. (B) The set
X is closed and bounded (C) The setpoint (xs, us) = (0,  0) satisfies
0 = f (0,  0). (D) The set U  is closed and bounded, and contains zero
in its interior.

Assumption 2. (A) The set X  ⊂ R
nx is robustly positive invariant

for fp( · , · , · ), that is, there exists u ∈ U  such that fp(x, u, w) ∈ X
holds for all x ∈ X, w ∈ W. (B) The set W is bounded and ||w|| :=
supk ∈ Z+ |wk|. (C) fp is uniformly continuous with respect to w.

Definition 3. [Comparison Functions] A function  ̨ : R+ → R+ is
of class K if it is continuous, strictly increasing, and ˛(0) = 0. A func-
tion  ̨ : R+ → R+ is of class K∞ if it is a K function and lim

s→∞
˛(s) = ∞.

A function  ̌ : R+ × Z+ → R+ is of class KL if, for each t ≥ 0, ˇ( · , t)
is a K  function, and, for each s ≥ 0, ˇ(s, · ) is nonincreasing and
lim
t→∞

ˇ(s, t) = 0.

Definition 4. [Stable Equilibrium Point] The point x = 0 is called
a stable equilibrium point of (2) if, for all k0 ∈ Z+ and �1 > 0, there
exists �2 > 0 such that |xk0

| < �2 ⇒ |xk| < �1 for all k ≥ k0.

Definition 5. [Asymptotic Stability] The system (2) is asymptot-
ically stable on X  if lim

k→∞
xk = 0 for all x0 ∈ X and x = 0 is a stable

equilibrium point.

Definition 6. [Lyapunov function] A function V : X → R+ that sat-
isfies the following:

˛1(|xk|) ≤ V(xk) ≤ ˛2(|xk|) (3a)

V(xk+1) − V(xk) ≤ −˛3(|xk|) (3b)

for all xk ∈ X where ˛1, ˛2, ˛3 ∈ K∞ is said to be a Lyapunov func-
tion for (2).

Theorem 7. Under Assumption 1, if system (2) admits a Lyapunov
function under some control law uc , then (2) is asymptotically stable
on X.

See Appendix B of [21] for the proof of the preceding.
We utilize the following properties in the case of plant-model

mismatch.

Definition 8. (ISpS): Under Assumption 2, the system (2) is Input-
to-State practically Stable (ISpS) on X if |xk| ≤ ˇ(|x0|, k) + �(||w||) +
c holds for all x0 ∈ X and k ≥ 0, where  ̌ ∈ KL,  � ∈ K, and c ∈ R+.

We  note that Definition 8 is only useful given a reasonable bound
on c. In the case that c = 0, Definition 8 simplifies to Input-to-State
Stability (ISS). In Section 6.2, we show that c depends on the non-
linearities in the terminal region.

Definition 9. (ISpS Lyapunov function) A function V : X → R+ that
satisfies the following:

˛1(|xk|) ≤ V(xk) ≤ ˛2(|xk|) + c1 (4a)

V(xk+1) − V(xk) ≤ −˛3(|xk|) + �(|wk|) + c2 (4b)

∀ x0 ∈ X, wk ∈ W,  k ∈ Z+

where ˛1, ˛2, ˛3 ∈ K∞, � ∈ K, and c1, c2 ∈ R+, is said to be an
ISpS Lyapunov function for (1).

Theorem 10. Let Assumption 2 hold. If the system (1) admits a
function V(x) satisfying (9), then the system is ISpS.

The reader is referred to [11] for more details on these defini-
tions.

3. Nonlinear model predictive control

First we  consider the traditional terminal cost/terminal region
NMPC formulation:

P(x) : VN(x) = minvi

N−1∑
i=0

L(zi, vi) +  (zN) (5a)

s.t. zi+1 = f (zi, vi) ∀ i = 0. . .N − 1 (5b)

z0 = xk (5c)

vi ∈ U  ∀ i = 0. . .N − 1 (5d)
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