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a  b  s  t  r  a  c  t

In  order  to improve  the fault  isolability  properties  of  a diagnosis  system,  a usual  way  is  to add  sensors
for  measuring  extra  state  variables.  Unlike  previous  literatures  that  usually  focus  on  adding  new  sensors
to fulfill  diagnosis  specifications,  this  paper  aims  to  analyze  the  influences  on  the  isolability  properties
when  more  variables  are  measured.

Using  structural  model  decomposition,  the equations  and  variables  of  a system  model  are  separated
into  different  categories.  Then,  the  association  relations  between  the  fault  equations  can  be  extracted,
which  imply  the  fault  isolability.  According  to  the  partitions  of  variables,  the  selection  space  of  adding
sensors  is  significantly  reduced.  It  is  useful  to  optimize  sensor  placement  and  enhance  fault  isolability.
Moreover,  our  approach  need  not  build  a fault  signature  matrix  for fault  diagnosis.  The  efficient  algorithms
based on  this  approach  are  proposed  and  the  simulation  of  a four-tank  system  indicates  the validity  of
the  method.

© 2018  Published  by  Elsevier  Ltd.

1. Introduction

In model-based diagnosis, fault diagnosis is performed based
on checking the consistencies of system redundancies, i.e. compar-
ing the system model and on-line system information. Generally,
obtaining system information is strongly dependent on available
sensor measurements, and in turn for a diagnosis system the sensor
placement greatly affects fault detectability (the ability of detecting
a fault occurrence) and fault isolability (the ability of distinguishing
between two  possible fault occurrences). In order to enhance the
fault isolability properties of a diagnosis system, a usual way  is to
add sensors for measuring extra state variables until the require-
ments are satisfied [1]. Additionally, it is often considered that
the more sensors are installed in a system, the better fault isola-
bility properties can be expected. However, the fault isolability
properties cannot always be improved by adding sensors. On the
other hand, that may  raise the instrumentation cost and system
complexity. Therefore, for handling the problem of optimal sen-
sor placement, it is necessary to analyze the effectivity of adding
sensors for improving the fault isolability properties.

In the last decades, quite a lot of works utilize structural analysis
to solve the sensor placement problem [2–5]. The structural analy-
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sis approach, that is an important branch of model-based diagnosis,
uses the structural model of a diagnosis system to identify the struc-
tural properties for fault diagnosis. Here, a structural model is a
graph representation of a system model, since only the relation
between variables and equations is taken into consideration [6]. In
other words, in a structural model the explicit analytical form of the
model equations are not considered. Since no numerical problems
need to be solved, this kind of models can be handled by efficient
graph-based tools. So, structural analysis generally has better com-
putational efficiency than analytical method. In a word, structural
analysis is suitable to deal with large scale and complex systems
[7–10], and can be used in the early design stage of a diagnosis
system [11].

Usually, some new sensors are added to measure more state
variables in a system for fulfilling the diagnosis specifications. In
[3], in order to determine which sensors should be added to obtain
maximum fault detectability and isolability, the authors make use
of computing minimal hitting sets to look for the solution. But, for
a large scale and complex system, this is not an easy issue. More-
over, from the viewpoint of analyzing fault diagnosability, the paper
does not provide the influences to the fault isolability properties of
the original system when different state variables are measured.
In [4], the author presents the equivalent effect between the diag-
nosability properties achieved by installing a set of sensors to a
system at a time and the properties achieved by installing individ-
ual sensor one by one. However, the paper also does not present
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whether the diagnosability properties can be enhanced when dif-
ferent state variables are measured by new sensors. In [12], for
reducing the computational complexity, the authors combine clus-
tering techniques with a branch and bound search strategy based
on a structural model to solve the sensor placement problem. But
the paper does not concern the effectivity analysis of adding sen-
sors for improving fault isolability properties. In a word, all these
literatures have in common that they all mainly focus on how to
add sensors to improve the fault diagnosability. However, in the
field of model-based diagnosis, few researches estimate the influ-
ences on the isolability properties of a diagnosis system when any
state variable is measured by an additional sensor.

For solving the problem of sensor placement, this paper analyzes
the effectivity of adding sensors for enhancing the fault isolability
properties by using structural analysis. In our approach, through
structural model decomposition, all the model equations and the
state variables of a diagnosis system are classified. In other words,
based on the structural properties of the system model, all the state
variables are partitioned into two types of variable sets. For the first
type of variable sets, adding sensors to measure those variables can-
not change the isolability properties. For the second type of variable
sets, which are some exclusive sets of variables, only measuring
some variables in one of the sets may  let two corresponding indis-
tinguishable faults be isolable from each other. Furthermore, the
condition of improving the fault isolability properties is presented.
The above conclusions significantly reduce the selection space of
additional sensors. That are useful to optimize sensor placement
and enhance the diagnosability properties of a given diagnosis
system. On the other hand, in the aspect of computation cost,
our method is based on structural models. This means that non-
linear differential systems can be efficiently handled. Moreover,
it need not determine all of the Minimal Structurally Overdeter-
mined (MSO) sets of a system model [13] for identifying the fault
isolability. Then, the computation burden of finding all MSO  sets is
avoided. Here, an MSO  set is a subsystem model with one degree
of redundancy, i.e. the set of equations has one more equation than
the number of unknowns.

Recently, the approach of fault signature matrix (FSM), a clas-
sical diagnosis approach, has been extensively applied in the field
of model based diagnosis [14]. In this paper, the FSM approach is
adopted to check the results computed by the new approach. The
FSM is a boolean matrix, where the rows correspond to the set of
residuals and the columns the set of faults. An ij-element of the
matrix contains the pattern 1 means that fault j can be detected
by the ith residual, 0 otherwise. The jth column constructs a binary
word that is called the signature of the fault j. If two signatures are
identical, the corresponding faults are said to be no distinguishable.
On the other hand, the residuals in a FSM are usually derived from
all MSO  sets of a system model, but the number of MSO  sets grows
exponentially with the redundancy degree [15]. In this paper, for
the sake of simplification, it is assumed that a single fault f can only
affect one equation (known as fault equation, denoted by ef ), then
the fault isolability relations can be transformed into the incidence
relations between fault equations. A sensor s only measures one
single unknown variable, and the sensor measuring is valid with
no sensor fault.

The rest of this paper is organized as follows. Following the
introduction session, Section 2 presents the background of struc-
tural analysis. Section 3 proposes the fault isolability properties of
an overdetermined system, and shows its influences when extra
variables are measured, which are used as a theoretical basis for
effectively improving the fault isolability properties. In Section 4
the corresponding new algorithms of this method are provided and
the validity of the approach is verified by the results of a benchmark

Fig. 1. Dulmage-Mendelsohn decomposition of a model M.

four-tank system in Section 5. Finally, this paper is summed up in
a conclusion in Section 6.

2. Background of structural analysis

2.1. Bipartite graph and matching

In the field of structural analysis, a structural model is usu-
ally represented by a bipartite graph (or equivalently its incidence
matrix) with equations and unknown variables as node sets [11]. A
bipartite graph G (E, V, A), where E is a set of model equations, V a set
of unknown variables and A a set of edges. An edge (ei, vj) ∈ A, as long
as the variable vj is included in equation ei, for ei ∈ E and vj ∈ V. The
corresponding incidence matrix M of G is a boolean matrix, where
the rows correspond to the set E of equations and the columns the
set V of variables. M (i, j) = 1 if (ei, vj) ∈ A, 0 otherwise. Note that the
known variables of a system model are not considered since they
will not be used in this paper.

In addition, a key role, in the context of structural analysis, is
played by the notion of matching in a bipartite graph. It is used to
identify overdetermined subsystems that imply the diagnosability
properties of a diagnosis system. A matching is a subset � of edges
such that any two edges in � have no common node. A maximum
matching is a matching with the maximal number of edges in G.

2.2. Dulmage-Mendelsohn decomposition

The Dulmage-Mendelsohn (DM) decomposition is a powerful
theoretical tool for structural analysis [16]. It only uses the row and
column permutations on an incidence matrix to derive an upper
triangular form. This decomposition is shown in Fig. 1, where the
gray-shaded parts correspond to ones and zeros, but the white parts
only correspond to zeros. The bold line in the matrix indicates a
maximum matching. It represents an oriented calculation path that
can be performed sequentially, in other words, from a maximal
matching the variables can be calculated by the equations.

An important property of the DM decomposition is that it splits
the model M into three partitions, namely, the overdetermined part
M + with more equations than unknown variables, i.e. |M + | > | V + |;
the justdetermined part M ◦, | M ◦ | = | V ◦ |; and the underdetermined
part M −, | M − | < | V − |, Where | • | denotes the cardinality of the
set. It should be noted that only the overdetermined part includes
redundancy, and only this part is useful for fault diagnosis [11] [13].

For any finite-dimensional bipartite graph, the three main par-
titions of the DM decomposition are unique, which is irrelevant to
the choice of a maximum matching [17]. In this work, the decompo-
sition can be implemented efficiently using the dmperm command
of MATLAB®.

2.3. Basic concepts on model-based diagnosis

In this part, some basic concepts are provided to describe fault
isolability properties.
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