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a b s t r a c t 

In this paper, a generalized fractional central difference Kalman filter for nonlinear discrete fractional 

dynamic systems is proposed. Based on the Stirling interpolation formula, the presented algorithm can 

be implemented as no derivatives are needed. Besides, in order to estimate the state with unknown 

prior information, a maximum a posteriori principle based adaptive fractional central difference Kalman 

filter is derived. The adaptive algorithm can estimate the noise statistics and system state simultaneously. 

The unbiasedness of the proposed algorithm is analyzed. Several numerical examples demonstrate the 

accuracy and effectiveness of the two Kalman filters. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

The optimum Kalman filter is a recursive state estimation algo- 

rithm for integer order linear state space systems. It is widely used 

in numerous engineering applications, such as aerospace, navi- 

gation [1] , econometrics, computer vision [2] , autopilots [3] and 

many others where estimation is relevant. The accuracy of the 

Kalman filter depends largely on certain assumptions, such as 

noise statistics. The problem is observed that the noise prior 

knowledge is unknown or time-varying in circumstances. The 

adaptive Kalman filter is a common tool to deal with this problem. 

The classical Kalman filter was applied to the estimation prob- 

lem for discrete dynamic systems [4] . Then based on the Taylor se- 

ries approximation, Bucy and Sunahara put forward the extended 

Kalman filter (EKF) [5,6] . Although the EKF is widely used for vari- 

ous engineering fields, there still exist some theoretical limitations, 

for example, nonlinear functions must be continuously differen- 

tiable and the filter is required to calculate the Jacobian matrix. 

Following the intuition that “it is easier to approximate a probabil- 

ity distribution than it is to approximate an arbitrary nonlinear func- 

tion or transformation ”, using the unscented transformation, Julier 

and Uhlmann et al. presented a new approach to approximate the 

posterior mean and the posterior error covariance [7] . The corre- 

sponding filter is known as the unscented Kalman filter (UKF). The 

UKF ensures an accuracy of at least the second order Taylor series 
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approximation. But the implementation of a UKF is more compu- 

tationally expensive than an EKF. Therefore, Biswas et al. proposed 

a new single propagated unscented Kalman filter and an extrapo- 

lated single propagated unscented Kalman filter to reduce compu- 

tational complexity [8] . 

For nonlinear Gaussian systems, Ito et al. presented the system- 

atic formulation of Gaussian optimal recursive filters, and obtained 

a novel central difference filter [9] . At the same time, NøRgaard 

et al. utilized the Stirling interpolation formula to approximate the 

posterior mean and the posterior covariance. Then the divided dif- 

ference filter is developed [10] . Those two filters are essentially 

identical and can be referred to as the central difference Kalman 

filter (CDKF) [11] . 

The performance of the KF depends largely on prior informa- 

tion of noise statistics. The use of imprecise information will re- 

sult in estimation errors or even filtering divergence. Adaptive 

filtering is an effective way to solve this problem. Most of the 

adaptive filtering methods are applied to linear systems. It can be 

divided into four categories: Bayesian, maximum likelihood, cor- 

relation and covariance matching [12] . Based on the maximum 

a posteriori (MAP) principle, the popular Sage-Husa AKF (SHAKF) 

[13] , which estimates the noise statistics and state recursively , 

also can be considered as a covariance matching method. Besides, 

the variational Bayesian based AKF is also an approximation of the 

Bayesian method [14] . For nonlinear systems, several approaches 

are investigated. 

On the other hand, thanks to that many systems can be de- 

scribed accurately with the introduction of fractional calculus, frac- 

tional systems have attracted much attention from engineering 
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and physics fields. Besides, the application of fractional calculus 

in control systems also has rapidly development, especially in sta- 

bility analysis [15,16] , controller design [17,18] , adaptive filtering 

[19,20] , etc. An important class of theoretical and practical prob- 

lems is how to obtain the exact state when state variables can- 

not be measured directly. Motivated by this, the fractional Kalman 

filter (FKF) and the fractional extended Kalman filter (FEKF) are 

proposed [21] . The FKF algorithm is used for state estimation in 

the systems with ultracapacitor [22] , fractional nonlinear systems 

in a chaotic communication scheme [23] and over networks with 

packet losses [24] , etc. The prime difference between the FKF and 

the integer Kalman filter is that the integer order dynamic systems 

can be considered as a Markov process, but fractional dynamic sys- 

tems can not. Because of the existence of the fractional differential 

operator, the estimated state x t of the FKF depends on all of the 

previous state, which leads to significant complexity. Meanwhile 

the defects of the integer order EKF also exist in the FEKF. 

Motivated by the previous discussions, a generalized fractional 

central difference Kalman filter (FCDKF) is presented. Based on the 

conventional CDKF, the proposed FCDKF is also a derivative-free 

filtering algorithm. Furthermore, considering that the prior infor- 

mation is hard to obtain, an adaptive fractional central difference 

Kalman filter (AFCDKF) is addressed, which can evaluate the sys- 

tem state and noise statistics simultaneously. The main contribu- 

tions are concluded as follows 

• A FCDKF and an AFCDKF are addressed to estimate the system 

state for different prior information conditions; 
• The unbiasedness of the AFCDKF algorithm is analyzed and 

then an unbiased recursive algorithm is developed; 
• The approximate accuracy and numerical complexity of pro- 

posed algorithms are analyzed. 

The rest of this paper is organized as follows. Section 2 re- 

views the fundamental knowledge of fractional calculus and CDKF. 

The FCDKF and AFCDKF for fractional discrete nonlinear sys- 

tems with stochastic perturbation are designed in Section 3 . 

Section 4 provides several illustrative numerical examples. Finally, 

Section 5 draws some conclusions. 

2. Preliminaries 

2.1. Problem statement 

The fractional discrete nonlinear system with stochastic pertur- 

bation can be described as follow 

Definition 2.1. The fractional discrete nonlinear system with 

stochastic perturbation can be described as { ∇ 

αx k = f k −1 (x k −1 ) + ω k −1 , 

x k = ∇ 

αx k −
∑ k 

j=1 (−1) j γ j x k − j , 

z k = h k (x k ) + νk , 

(1) 

where ∇ 

α = [ ∇ 

α1 , · · · , ∇ 

αn ] T and γ j = diag 
[(

α1 
j 

)
, · · · , 

(
αn 

j 

)]
. 

Here k denotes the time index, x k ∈ R 

n , α ∈ R 

n , and z k ∈ R 

m are 

the system state, orders of difference and measurement value, re- 

spectively. f k : R 

n → R 

n and h k : R 

n → R 

m are the nonlinear state 

transform function and measurement function. ω k ∈ R 

n and νk ∈ 

R 

m mean the system noise and measurement noise. Moreover, 

ˆ x i | j = E { x i | Z j } indicates the state mean conditioned on Z j , where 

Z j = [ z 1 , · · · , z j ] is the observed value. ∇ is the nabla operator, and 

its definition is given by Definition 2.2 . 

Definition 2.2. The fractional backward difference of the order α
is given by 

∇ 

α f (k ) = 

k ∑ 

j=0 

(−1) j 
(

α

j 

)
f (k − j) , (2) 

where k ∈ N + and the corresponding binomial coefficient can be 

defined as 
(
α
j 

)
= 

α(α−1) ··· (α− j+1) 
j! 

. 

The same as the integer order EKF, the FEKF has been proposed 

to estimate the system state. But the Jacobian matrix of nonlin- 

ear functions is also required in FEKF, which is one of the ma- 

jor constraints. Furthermore, the performance of state estimation 

is positively related to the accuracy of prior noise information. In 

most situations, those statistics are inexactly known or even com- 

pletely unknown. This will lead to large estimation errors or even 

to filtering divergence. Therefore, the objective of this paper is to 

design a derivative-free FKF algorithm to estimate the system state 

exactly. In addition, the adaptive FKF with unknown prior informa- 

tion is also investigated, which aims to evaluate the system state 

and noise statistics concurrently. 

To simplify the analysis, the following common assumptions are 

carried out [25] . 

Assumption 2.3. The two noise vectors subject to Gaussian distri- 

bution { 

E { ω k } = q k , Cov (ω i , ω j ) = Q i δi j , 

E { νk } = r k , Cov (νi , ν j ) = R i δi j , ∀ i, j, k, 

Cov (ω i , ν j ) = 0 , 

(3) 

where δij is the Kronecher - δ function, R is a positive definite matrix 

and Q is a positive semidefinite matrix. 

Assumption 2.4. The initial state x 0 obeys Gaussian distribution, 

and is uncorrelated with both the system and measurement noises. 

Assumption 2.5. E { x i | Z j } = E { x i | Z i } = 

ˆ x i , ∀ i ≤ j. 

Assumption 2.6. E { (x i − ˆ x i )(x j − ˆ x j ) 
T } = 0 , ∀ i � = j. 

2.2. Fundamental knowledge 

First, the Stirling interpolation formula is introduced. 

Definition 2.7. Assuming that x ∈ R 

n , z = f (x ) is a multidimen- 

sional differentiable function, applying the Stirling interpolation 

formula around the point x = x̄ yields 

z = f (x ) = f ( ̄x + �x ) = f ( ̄x ) + ̃

 D �x f + · · · , (4) 

where ˜ D �x f = 

1 
h̄ 

(∑ n 
i =1 �x i μi δi 

)
f ( ̄x ) and �x = x − x̄ . 

Here, � denotes a selected interval length, and μi and δi are the 

locally difference operators (see [10] ). 

Next, the so-called Cholesky factorization is introduced. Consid- 

ering the function z = f (x ) , the stochastic state x takes on a Gaus- 

sian distribution, denoted as x ∼ N ( ̄x , P x ) . Based on the Stirling 

interpolation formula, the probability distribution of z ∼ N ( ̄z , P z ) 

can be deduced. Based on the Cholesky factorization, we derive 

P x = S x S 
T 
x . Next, the following transformation of x is introduced: 

y = S −1 
x x , (5) 

˜ f ( ̄y ) = f ( S x ̄y ) = f ( ̄x ) . (6) 

The following results can be derived [10] 

ȳ = E { y } = S −1 
x x̄ , (7) 

E { (y − ȳ )(y − ȳ ) T } = I , (8) 
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