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a b s t r a c t 

Spectrum sensing schemes based on fractional lower order moment (FLOM) are often used in impulsive 

noise environments in which traditional energy detectors are not applicable. The performance of FLOM- 

based detectors operating in an α-stable noise environment is difficult to evaluate. This is because α- 

stable random variables can usually only be modeled by the characteristic function since closed-form 

expressions are not available, except for the special values of the characteristic exponent that correspond 

to the Cauchy and Gaussian noise distributions. In this paper, we derive closed-form expressions for the 

probability density function (PDF) and corresponding complementary cumulative distribution function 

(CDF) for a symmetric α-stable random variable with an arbitrary characteristic exponent α (0 < α ≤ 2) 

in terms of the Meijer G–function. Consequently, we evaluate the receiver operating characteristics (ROC) 

curve for the FLOM detectors. The analytical results are validated with Monte Carlo simulations. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The rapid growth in the demand for wireless services and the 

corresponding increase in the deployment of wireless networks in 

licensed and unlicensed frequency spectrum have placed severe 

burden on available spectrum. Cognitive radio (CR) technology has 

been shown to be a viable technology to minimize spectral holes 

and significantly improve spectrum utilization and efficiency [1] . 

In a CR system, unlicensed (secondary) users (SU) dynamically and 

opportunistically access frequency bands allocated to licensed (pri- 

mary) users (PU) by continually monitoring the spectrum to iden- 

tify when the PU is not using the spectrum or when it can be ad- 

equately protected from interference generated by the SU. A cru- 

cial first step in enabling CR systems is spectrum sensing [2] . By 

exploiting the spectrum in an opportunistic fashion, CR enables 

SU to sense which portions of the spectrum are available, select 

the best available channel, coordinate spectrum access with other 

users, and vacate the channel when a PU reclaims the spectrum 

usage right [3] . 

Several spectrum sensing techniques are available for detecting 

the presence of a PU. These can usually be classified into three 

categories: coherent detection, feature detection, and non-coherent 
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detection [4–9] . Coherent and feature based detection schemes 

usually require knowledge of signal and noise characteristics of the 

PU in order to design the optimum detection scheme and, thus, 

yield improved detection performance. On the other hand, non- 

coherent sensing techniques do not require prior knowledge of the 

primary users signal characteristics. Because the transmission sce- 

nario of the PU is usually unknown to the SU, non-coherent spec- 

trum sensing schemes are frequently adopted. The most commonly 

used non-coherent spectrum sensing technique is the energy de- 

tector [5–8,10] . The energy detector is useful not only because it 

usually produces reasonably good detection performance in Gaus- 

sian noise, but also because it is simple to implement [9] . However, 

the performance of the energy detector is limited by its sensitivity 

to noise uncertainty [11] . 

In the performance analysis of most schemes designed for spec- 

trum sensing in CR, it is usually assumed that the noise back- 

ground follows a Gaussian distribution based on a central limit 

theorem argument. However, in some practical CR environments, 

the noise may be non-Gaussian or impulsive in nature and spec- 

trum sensing schemes based on the energy detector are known to 

be susceptible to severe performance degradation [4] . The energy 

detector, being a semi-blind procedure, is independent of the PU’s 

signal properties but computes the sensing threshold based on 

knowledge of the noise statistics. Thus the accuracy of the energy 

detector depends on an accurate estimate of the noise power. Sev- 

eral generalizations of the energy detector have been introduced to 
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improve its spectrum utilization in CR systems operating in non- 

Gaussian noise environments [12] , [13] . In particular, replacing the 

squaring operation of the received signal envelope of the conven- 

tional energy detector with an arbitrary positive power p yields a 

more effective and more efficient spectrum sensing technique in 

a non-Gaussian noise and interference background [12] . Spectrum 

sensing schemes for which p is a fraction (0 < p < 1), known as 

fractional lower order moment (FLOM) detectors, have been shown 

to be effective in non-Gaussian noise [13] . 

Several models are available in the literature to model impul- 

sive aggregation of random effects. When the random effects have 

a heavy tail distribution, the sum of their effects follows a non- 

Gaussian stable distribution, of which the Gaussian distribution is 

a special case. Although the Gaussian model is symmetric about its 

mean and has finite variance, a non-Gaussian stable distribution 

may admit skewness and exhibit infinite variance and, in some 

cases, infinite mean. Stable distributions and stable processes are 

very useful in statistically characterizing the impulsive phenomena 

observed in a variety of systems [14] . The α-stable distribution has 

proved to be very successful in modeling practical noise sources, 

including both Gaussian and non-Gaussian noise with different de- 

grees of non-Gaussianity through the selection of its characteris- 

tic exponent, α [15] . A stable law is a direct generalization of the 

Gaussian distribution and, in fact, includes the Gaussian as a limit- 

ing case. The main difference between the stable and the Gaussian 

distributions is that the tails of the stable density are heavier than 

those of the Gaussian density [16] . However, the practical difficulty 

in working with stable distributions is the lack of closed-form for- 

mulas for most stable symmetric distributions, except for the spe- 

cial cases of the Gaussian ( α = 2 ) and Cauchy ( α = 1 ) distributions 

[17] . 

Recently, a spectrum sensing scheme based on FLOM for detect- 

ing a primary user in non-Gaussian noise that can be modeled by 

symmetric α-stable (S αS) noise was proposed in [18,19] . Since the 

p th moment of an S αS is finite when p ≤α , the scheme proposed 

in [18] can be implemented in practice. However, the main draw- 

back of the scheme is the lack of closed-form expressions for the 

statistical distribution of an α-stable random variable and, hence, 

the distribution of its p th moment does not exist in closed form. 

Consequently, the probability of false alarm and probability of de- 

tection for the scheme were based on Gaussian statistics although 

the test statistics is clearly not Gaussian. In this paper we perform 

the exact performance analysis of a FLOM detector operating in an 

S αS for an arbitrary value of α. Specifically, the main contributions 

of this paper are as follows; 

1. We derive a closed-form expression for the probability distri- 

bution of an S αS random variable with rational values of the 

characteristic exponent ( α = u/ν) , where u and ν are positive 

integers, in terms of the Meijer G-function. Consequently, the 

Cauchy (α = 1) and Gaussian (α = 2) distributions are obtained 

as special cases of the derived distribution. 

2. Additionally, based on the derived distribution of the S αS , we 

also derive the distribution of its fractional order moment ( p th 

moment) in terms of the Meijer G-function. 

3. Invoking the generalized central limit theorem of which the 

Gaussian central limit theorem is a special case, we derive the 

distribution of the test statistics under the hypotheses and con- 

sequently, derive expressions for the probability of false alarm 

( P f ) and probability of detection ( P d ) of the test. 

The remainder of the paper is organized as follows. An 

overview of the basic properties of S αS random variables is given 

in Section 2 . Additionally, closed-form expressions for the PDF of 

an S αS random variable as well as that of its p -th moment are 

also derived in Section 2 . In Section 3 , the system model is pre- 

sented and the distribution of the FLOM test statistics is derived. 

In Section 4 , we analyze the performance of the FLOM detector. 

Graphical illustrations of numerical and computer simulation re- 

sults are presented in Section 5 . Finally, Section 6 is devoted to 

concluding remarks. 

2. Alpha-stable distributions 

The α-stable distribution has been used extensively to model 

impulsive phenomenon in many systems. In this section, we give 

an overview of some of the properties of an α-stable distribution 

which will be useful in the remainder of this paper. The α-stable 

distribution possesses several defining properties and characteris- 

tics [17] , [20] . 

Property 1 (Stability Property) . If X , X 1 , and X 2 are independent α- 

stable random variables (r.v.) with the same distribution, then X can 

be expresses as a linear combination of X 1 and X 2 , i.e., 

a 1 X 1 + a 2 X 2 
d ⇒ a 3 X + a 4 , (1) 

where a 1 , a 2 , and a 3 are positive constants, a 4 ∈ R , and the symbol 

“
d ⇒ ” implies that both sides have the same distribution. 

Property 2. Let the distribution of an α-stable random variable X be 

denoted as S α( β , γ , δ), i.e., X ∼ S α( β , γ , δ), then for any a � = 0, b ∈ R , 

aX + b ∼
{ 

S α( sgn ( a ) β, | a | γ , aδ + b ) a � = 1 

S α( sgn ( a ) β, | a | γ , aδ

+ b − 2 
π a ( ln | a | ) γβ

)
a = 1 

(2) 

where sgn ( x ) is the sign (signum) of a real number x. 

Property 3. If X 1 ∼ S α( β1 , γ 1 , δ1 ) and X 2 ∼ S α( β2 , γ 2 , δ2 ) are inde- 

pendent, then 

X 1 + X 2 ∼ S α(β, γ , δ) (3) 

where γ = 

(
γ α

1 
+ γ α

2 

)1 /α
, β = 

β1 γ
α
1 

+ β2 γ
α
2 

γ α
1 

+ γ α
2 

, and δ = δ1 + δ2 . 

Property 4 (Tail of Distribution) . If X ∼ S α( β , γ , δ), with 0 < α < 2. 

Then 

lim x →∞ 

P ( X > x ) = C α
1 + β

2 

(
γ

x 

)α

, (4a) 

lim x →∞ 

P ( X < −x ) = C α
1 − β

2 

(
γ

x 

)α

, (4b) 

where [17] 

C α = 

1 ∫ ∞ 

0 x −α sin x dx 
= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 − α

�( 2 − α) cos 

(
πα

2 

) , if α � = 1 

2 

π
, if α = 1 . 

(5) 

Note that, we may use the facts that 

�( 1 − x ) �( x ) = 

π

sin ( πα) 
= 

π

2 sin 

(
πx 
2 

)
cos 

(
πx 
2 

) , (6) 

to unify (5) as [20] 

C α = 

2 

π
�( α) sin 

(
πα

2 

)
. (7) 

Property 5 (Fractional Order Moments) . The fractional order mo- 

ment of the S αS random variable X ∼ S α( β , γ , 0) with zero location 

parameter ( δ = 0 ) is given by 

E 

[| X | p ] = 

2 

p+1 �
(

p+1 
2 

)
�
(
− p 

α

)
α

√ 

π �
(
− p 

2 

) γ α/p , p < α . (8) 
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