

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Characterization of a 3DOF aeroelastic system with freeplay and aerodynamic nonlinearities – Part I: Higher-order spectra

Michael Candon ^{a,*}, Robert Carrese ^a, Hideaki Ogawa ^a, Pier Marzocca ^a, Carl Mouser ^b, Oleg Levinski ^b, Walter A. Silva ^c

- ^a School of Engineering (Aerospace and Aviation), RMIT University, Melbourne, Victoria, Australia
- ^b Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
- ^c NASA Langley Research Center, Hampton, Virginia, USA

ARTICLE INFO

Article history: Received 18 October 2017 Received in revised form 21 April 2018 Accepted 27 May 2018

Keywords:
Nonlinear aeroelasticity
System identification
Higher-order spectra
Structural freeplay
Aerodynamic nonlinearity
Transonic flow
LCO
Chaotic response

ABSTRACT

The identification of nonlinear systems in aeroelasticity poses a significant challenge for practitioners, often hampered by the complex nature of aeroelastic response data which may contain multiple forms of nonlinearity. Characterizing and quantifying nonlinearities is further hampered when the response is obtained at a location which is away from the nonlinear source and/or the response is contaminated by noise. In the present paper, a three-degree-of-freedom airfoil with a freeplay nonlinearity located in the control surface and exposed to transonic flow is investigated. In this Part I paper the main form of analysis is via higher-order spectra techniques to unveil features of the nonlinear mechanism which result from i) structural nonlinearities (freeplay) in isolation and ii) freeplay with Euler derived nonlinear inviscid aerodynamic phenomena (transition between Tijdeman Type-A and Type-B shock motion). It is shown that the control surface structural freeplay nonlinearity is characterized by strong cubic phase-coupling between linear and nonlinear modes. On the other hand, nonlinear inviscid flow phenomena are shown to be characterized by quadratic phase-coupling between linear and nonlinear modular modes, the strength of which is related to the strength of the aerodynamic nonlinearity (amplitude of the shock motion). The nonlinear inviscid flow phenomena do not appear to affect the identification of the freeplay nonlinearity. Conjectures are made which address the transition between aperiodic, quasi-periodic and periodic behavior (pre-flutter), further physical support towards these conjectures is provided in Part II [1]. The limitations of the higherorder spectra approach are assessed, in particular, the analysis demonstrates the difficulty in extracting natural frequencies with this approach.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Within the body of knowledge surrounding aeroelasticity for aircraft it is well documented in the literature that both aerodynamic and structural nonlinearity can induce undesirable nonlinear aeroelastic phenomena. In particular, limit cycle

E-mail addresses: s3329364@student.rmit.edu.au (M. Candon), robert.carrese@rmit.edu.au (R. Carrese), hideaki.ogawa@rmit.edu.au (H. Ogawa), pier. marzocca@rmit.edu.au (P. Marzocca), Carl.Mouser@dsto.defence.gov.au (C. Mouser), Oleg.Levinski@dsto.defence.gov.au (O. Levinski), walter.a.silva@nasa.gov (W.A. Silva).

^{*} Corresponding author.

Nomenclature

Nomenclature

pitching displacement В control surface displacement

control surface freeplay margin β_s structural-to-fluid mass ratio μ pitch natural frequency (coupled) ω_{α}

control surface natural frequency (coupled) $\omega_{\scriptscriptstyle B}$

plunge natural frequency (coupled) ω_h

nonlinear mode ω_{NL} phase Φ

 τ tricoherence а normalized distance from the elastic axis to mid-chord

asymptotic range calculated for the grid convergence index A_r

b semi-chord ĥ bicoherence В bispectrum C_1 lift coefficient

moment coefficient of the airfoil $C_{m\alpha}$

moment coefficient of the control surface $C_{m\beta}$

damping matrix C

d normalized distance from the mid-chord to hinge

f frequency

F nonlinear internal forces \mathcal{F} fourier transform

 F_s safety factor used in the grid convergence index calculations

damping ratio

 $GCI_{12,23}$ grid convergence index between refinement levels 1 and 2, and, 2 and 3 respectively

plunging displacement h

non-dimensional airfoil moment of inertia I_{α}

non-dimensional control surface moment of inertia I_{β}

general terms used for the physical solutions to each grid in the grid convergence index $j_{1,2,3}$

plunge longitudinal stiffness k_h pitch torsional stiffness k_{α}

control surface torsional stiffness k_{β}

K stiffness matrix

L lift

m airfoil mass per-unit-span

M higher-order spectra number of data segments

airfoil pitching moment M_{α}

 M_{β} control surface pitching moment freestream Mach number M_{∞}

M mass matrix

Ν total number of data points q_{∞} freestream dynamic pressure

normalized radius of gyration of the airfoil about the elastic axis r_{α}

normalized radius of gyration of the control surface about the control surface hinge axis r_{β} P

order of convergence for the grid convergence index

 S_{α} non-dimensional airfoil static moment S_{β}

non-dimensional control surface static moment

 SP_{NL} general nonlinear spectra term

 $SP_{NL,norm}$ general normalized nonlinear spectra term

time t

time-step size Δt trispectrum T displacement vector 11

velocity vector (first derivative of **u** with respect to time) ù acceleration vector (second derivative of **u** with respect to time) ü

 V^* velocity index

maximum aft location of the shock x_{aft} maximum forward location of the shock χ_{for}

Download English Version:

https://daneshyari.com/en/article/11032456

Download Persian Version:

https://daneshyari.com/article/11032456

<u>Daneshyari.com</u>