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Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of 
many medical imaging studies, and recently, the approaches based on dictionary learning (DL) are noted 
as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to 
date do not naturally extend to multi-subject analysis. In this paper, we propose a DL algorithm for multi-
subject fMRI data analysis which is derived using a hybrid (temporal and spatial) concatenation scheme. 
It differs from existing DL methods in both its sparse coding and dictionary update stages. It has the 
advantage of learning a dictionary common to all subjects as well as a set of subject-specific dictionaries, 
as a result, it is able to generate both group-level spatial activation maps as well as group-level temporal 
dynamics, which are particularly attractive for task-based fMRI studies. In addition, by simultaneously 
learning multiple sub-specific dictionaries, it also provides us with unique sub-specific features as well. 
Performance of the proposed DL method is illustrated using simulated and real fMRI datasets. The results 
show that it can successfully extract common as well as sub-specific latent components.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, voxel-based functional magnetic resonance 
imaging (fMRI) activation detection has been extensively used to 
perform functional brain mappings where task-based or stimulus-
driven paradigms have been used to study the brain function. 
Based on the relative change in the blood oxygen level dependent 
(BOLD) signal with respect to the baseline during task performance 
or as a response to a stimulus, inferences are made as to which ar-
eas of the brain are activated [15]. The methods used for such 
analysis can be characterized into two categories; model-based or 
data-driven. General linear model (GLM) and random field theory 
[16] are among the widely used model-based methods. However 
key drawbacks of model-based approaches is that they assume 
the hemodynamic response function (HRF) [28] to be known a-
priori and they do not account for its variation across subjects 
and brain regions [19]. In addition, they can only extract features 
(spatial maps) corresponding to task-related activity and ignore 
the intrinsic brain function, which might not be directly linked to 
the external stimuli [37]. Moreover, model-based methods are not 
suitable for hard to model experimental paradigms, e.g. resting-
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state studies or naturalistic paradigms such as listening to music 
or watching a movie. The data-driven methods, on the other hand, 
do not make such assumptions and can be used in wide range of 
experimental paradigms. As a result, data-driven methods are get-
ting more and more traction within the neuroscience community.

In contrast to model-based methods, data-driven approaches 
minimize the assumptions on the model structure and decompose 
the observed data based on a factor model and a specific con-
straint. These methods include principal component analysis (PCA) 
[3,23], independent component analysis (ICA) [21,33], canonical 
correlation analysis (CCA) [14,20], and multiset CCA [47,10]. ICA 
in particular has attracted a lot of interest from the community 
for analysis of both task-based and resting-state fMRI datasets [6]. 
More recently, brain networks have been found to be sparse in na-
ture and a healthy debate has emerged regarding the starting point 
for fMRI data analysis, i.e., to use sparsity or independence [8,7]. 
The authors in [7] have clarified the issues with [8] and empha-
sized that the interpretations should be carefully made regarding 
the role of sparsity vs independence in the final decomposition 
of the data. Moreover, they went on to highlight the usefulness 
of sparsity as the starting point in fMRI analysis, which was also 
noted in [34], the pioneering work that started the activity in data-
driven methods for fMRI analysis. As a result, sparse methods have 
seen increasing interest in solutions to fMRI data analysis.

Currently, ICA is being considered a go-to method for fMRI anal-
ysis. However, in recent literature, it is being argued that the ICA 
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methods are not all without drawbacks. In [58] (and references 
therein), authors have highlighted one such potential limitation, 
i.e., the ability to separately learn brain networks which have sig-
nificant spatial overlap. In [31] (and references therein), it has 
been argued that certain brain regions appear to work in con-
junction to perform various cognitive processes, i.e., a functional 
network (FN) could utilize multiple heterogeneous neuroanatomic 
areas. Furthermore, in [58] (and references therein), it has been 
shown that there exists extensive spatial overlap of large scale FNs 
in the brain. On the other hand, there exists another data-driven 
approach which is free of such limitation, this method is known as 
Dictionary Learning (DL). In [58], authors have performed extended 
experiments to compare ICA with DL methods. They have con-
cluded that in case of zero to low spatial overlap of FNs, ICA meth-
ods performance is better or on par with DL methods. Whereas, 
in case of moderate to severe spatial overlap of FNs, DL meth-
ods perform significantly better than the ICA methods. Thus using 
DL methods should provide a real benefit in the analysis of fMRI 
datasets.

Sparse signal representation [59] has seen a growing interest 
in the recent years and has led to state-of-the-art performance in 
the fields like signal representation [2,32], image denoising [11], 
brain tissue segmentation [38], and face recognition [56,54,22]. In 
these applications the main goal is to represent a given test signal 
s using only a few columns (atoms) from a given basis set (dictio-
nary) D. Mathematically, the model used is s = Da with sparse a, 
hence the term sparse representation. In [36], authors have shown 
that sparse linear codes (over wavelet basis set) for natural scenes 
develop receptive fields which are similar to the cells found in 
the primary visual cortex. Following this key motivating result, 
many DL and sparse coding methods have been proposed for sin-
gle subject as well as multi-subject fMRI data analysis [55]. In [26], 
authors propose a sparse general linear model based on K-SVD 
algorithm [2], in [25] CCA and DL algorithm are used to learn in-
teresting temporal dynamic components, which are then used to 
generate spatial activation maps via regression analysis. In [1] a 
fast and incoherent DL algorithm tuned for fMRI analysis is pro-
posed. In [46] authors incorporated the correlation structure of the 
fMRI dataset into the DL framework and in [43,45] the smooth 
temporal dynamics are learned using basis expansion and reg-
ularization approaches for fMRI analysis. In the DL formulations 
presented in [57,30,31,60], the authors use [32] to decompose the 
fMRI dataset S into an overcomplete dictionary D and a sparse co-
efficient matrix A. Under this framework, atoms of the dictionary 
represent significant neuronal temporal dynamics and the rows of 
sparse coefficient matrix represent their respective spatial maps.

In literature, generally speaking, there are two distinct tech-
niques in which the DL methods have been used to analyze multi-
subject fMRI datasets. The first category includes the methods that 
decompose each subject fMRI dataset into a dictionary/sparse code 
matrix pair separately and perform brain activity analysis by locat-
ing components of interest (COI) across a group of subjects. The 
methods proposed in [26,57,30,31,53] lie in this category. In [30], 
authors learn a dictionary for each subject dataset and generate 
group-wise statistical maps by averaging over similar spatial maps. 
Authors in [53] propose a multi-subject DL algorithm where sub-
specific maps are modeled as noisy versions of group-level maps, 
and learn sub-specific and group-level maps using a joint formu-
lation. One key shortcoming of these methods is that they operate 
on individual datasets and as a result do not take into considera-
tion the joint information across multiple datasets. In case of the 
aforementioned papers, performing group-analysis is not straight 
forward. Once each subject dataset is decomposed into a dictio-
nary/sparse code matrix pair, the components of interest (temporal 
dynamics or spatial maps) might not be in the same place (col-
umn/row index) for all subject dictionary/sparse code matrices, 

and may end up in different locations. Thus for joint analysis, 
matching of components via visual inspection or clustering are 
needed to be performed, which quickly becomes prohibitive once 
the number of subjects or size of the dictionary increases.

The second category contains those methods which avoid this 
shortcoming by using all subject datasets in the DL formulation 
[35,44,29]. In [35], authors decompose temporally concatenated 
multi-subject datasets into a single (shared) dictionary/sparse code 
matrix pair, where the sparse code matrix contains the group-
level spatial activation maps and dictionary atoms correspond to 
sub-specific time courses. This method is suitable for studying the 
resting state or on-going activity experiments for which an exper-
imental design to model the time courses is not available. On the 
other hand, authors in [44] have proposed a method tuned for 
the study of task-based experiments where the authors use spa-
tially concatenated datasets to learn a shared dictionary, containing 
group-level (paradigm) time courses, and a sparse code matrix, 
containing subject-level spatial maps. However, we are interested 
in learning both group-level temporal dynamics and spatial maps 
which are of particular interest in task-based fMRI studies. To this 
end, the framework proposed in [29], similar to [44], uses spa-
tially concatenated datasets to extract subject-level spatial maps, 
which are then decomposed into group-level spatial maps and a 
sparse loading matrix using [32]. This loading matrix is then used 
to discriminate different task types using a support vector machine 
(SVM). Although the framework proposed in [29] uses spatial and 
temporal concatenation to learn group-level features (time course 
or spatial map), which inherently introduces bias against unique 
sub-specific features present in the data. Furthermore, one might 
ask whether a specific recovered feature is a group-level feature or 
is only present in few (or certain) subject datasets. Currently avail-
able DL frameworks fail to answer this question. Authors in [24]
have proposed a framework which tries to tackle this problem, 
however, they use a pre-averaged dataset to extract group-level 
features instead of joint analysis using all datasets simultaneously, 
which inherently is a sub-optimal strategy.

In this paper, we propose a novel DL framework which uses a 
hybrid (temporal and spatial) concatenation strategy to decompose 
the multi-subject fMRI datasets into a joint (group-level) dictio-
nary/sparse code pair and unique (sub-specific) ones, resulting in 
the separation of joint and unique features into different dictio-
nary/sparse code matrices. These pairs can then be used to per-
form population level analysis using group-level features, or ana-
lyze inter-subject variability using the extracted unique features. 
To perform this decomposition, our goal is to represent each vox-
els’ time series from every subject dataset using only a few atoms 
from a joint-info dictionary and a sub-specific one. By using a hy-
brid fMRI data concatenation scheme, we separate similar neural 
dynamics (joint dictionary) and their respective spatial maps (joint 
sparse codes) from sub-specific counterparts. This formulation not 
only leads to group-level time courses (TC) and spatial maps (SM), 
but it also learns the most dominant sub-specific unique TCs and 
SMs as well.

In the next section, we briefly review DL and sparse coding 
problems. In section 2.2, we describe the proposed DL algorithm 
with the proposed solution derived in section 2.3. Section 3 con-
tains performance analysis of the proposed method using simu-
lated as well as real fMRI datasets. The concluding remarks are 
given in section 4.

2. Method overview

Notation: In rest of the paper, vectors are denoted by boldface 
lower case letters, e.g. a, matrices are denoted with upper case 
boldface letters, e.g. A, and any constant parameters are denoted 
by italics, e.g. K. A single subject fMRI dataset is denoted as Si



Download English Version:

https://daneshyari.com/en/article/11032457

Download Persian Version:

https://daneshyari.com/article/11032457

Daneshyari.com

https://daneshyari.com/en/article/11032457
https://daneshyari.com/article/11032457
https://daneshyari.com

