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In this paper, we propose a beamspace-based method for nominal direction-of-arrival (DOA) and angular 
spread estimation of incoherently distributed (ID) sources using a uniform linear array (ULA). Firstly, 
with generalized array manifold of the ULA, we obtain the beamspace array manifold by performing 
beamspace transformation on the received vector of two overlapping subarrays, and further derive the 
beamspace shift invariance structure via designing appropriate beamforming matrix. Next, the total least 
squares approach is used to estimate the nominal DOAs of ID sources. Finally, with the DOA estimates, 
the corresponding angular spreads are obtained by means of the central moments of the angular 
distribution. The proposed method does not involve any spectral search and reduces the dimension of 
matrix operations, thus it is obviously more efficient than the traditional algorithms. Simulation results 
indicate that our proposed algorithm is comparable to the existing algorithms when the number of 
sensors is large.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Source localization, which is referred to as the estimation of 
direction-of-arrival (DOA), is an important topic in array signal 
processing and has attracted considerable attention in the past 
decades [1]. Therefore, various high-resolution methods like MU-
SIC [2] and ESPRIT [3] were developed to perform DOA estimation. 
Most of them are based on point source model, that is, the en-
ergy of each source is assumed to be concentrated at discrete 
direction. But in applications such as radar, sonar, mobile com-
munications, the angular spread effect cannot be neglected due to 
multipath propagation [4]. Therefore, a “scattered” or “distribut-
ed” source model is more appropriate [5,6], where the received 
signal is characterized by two angular parameters, i.e., the nom-
inal DOA and the angular spread. Depending on the correlation 
among different rays, the distributed sources can be categorized 
into coherently distributed (CD) and incoherently distributed (ID) 
sources [7]. A source is called CD sources if the signal components 
arriving from different directions are delayed and scaled replicas 
of the same signal, whereas in the ID case, all signals coming from 
different directions are assumed to be uncorrelated.
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In the past decades, the parameter estimation of CD sources has 
been well studied via extending the classical methods for point 
sources [7–18]. However in case of ID sources, the parameter esti-
mation problem becomes rather complicated since the dimension 
of the signal or noise subspace cannot be determined. Thus, most 
classical methods based on point source assumption are not eas-
ily generalized to this situation. To cope with ID sources, various 
special approaches have also been developed on the basis of max-
imum likelihood (ML), pseudo-signal subspace, generalized Capon 
(GC) and others.

Among the existing estimators for ID sources, the ML estima-
tor [19] can provide optimal performance, where the likelihood 
function is jointly maximized for all parameters of the Gaussian 
model. The ML estimator has heavy computational burden because 
it involves a multidimensional search over a nonlinear likelihood 
function. While the approximate ML estimators of [20,21] exhibits 
suboptimal performance with lower computational load. By using 
a simplified signal model, another approximate ML estimator was 
proposed in [22]. It reduces the search dimension but is limited to 
a single-source scenario. These approximate ML estimators are still 
computationally intensive.

Subspace-based approaches are another type of popular tech-
niques. The modifications of the classical MUSIC algorithm have 
given rise to the distributed source parameter estimator (DSPE) [7]
and dispersed signal parameter estimator (DISPARE) [23]. But both 
of them can not provide consistent estimates. To overcome this 
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drawback, a class of weighted subspace fitting algorithms in the 
case of full-rank data model has been developed to provide consis-
tent parameter estimates [24,25]. Moreover, an efficient subspace-
based (ESB) estimator without eigen-decomposition was proposed 
in [26]. The main difficulty of these subspace-based approaches 
is the choice of the effective dimension of the pseudo-signal sub-
space, since the optimal choice depends on the unknown param-
eters. To tackle this issue, the GC estimator [27] was presented 
by generalizing the Capon method [28]. However, it assumes that 
the multiple sources must have identical and known angular dis-
tribution. To overcome the shortcomings of [27], a robust GC al-
gorithm was proposed in [29]. Similar to the ML estimator, these 
algorithms have high computational complexity due to multidi-
mensional search.

To reduce the computational cost, some ID sources estimators 
based on covariance matching [30], two-ray model and ESPRIT [3]
have been proposed. For instance, the COMET-EXIP method [31]
replaces the multidimensional search via two successive one-
dimensional (1-D) searches. However, this algorithm suffers from 
ambiguity problem that limits its application in practice. This am-
biguity problem was later successfully solved in [32]. Moreover, 
[31] and [32] can only handle a single source. In [33], a search-free 
covariance fitting approach is presented, where the nominal DOAs 
and angular spreads can be obtained from the central and noncen-
tral moments of the angular power densities. This approach can 
be used for widely separated multisource scenarios with different 
angular distributions. However, this method requires the prelimi-
nary estimates of nominal DOAs. In [34], the authors suggested a 
low-complexity estimator using a two-ray approximate model for 
distributed sources, where each source is considered as a rank two 
component to the array covariance matrix. The main disadvantage 
of this method is that it is restricted to the single source case. 
In [9], an ESPRIT-based method was proposed, which derives the 
generalized array manifold (GAM) to obtain the closed-form so-
lutions of nominal DOAs and angular spreads. By employing the 
generalized ESPRIT [35], the authors of [36] have devised the gen-
eralized ESPRIT method for ID sources. Compared with the ESPRIT-
based method [9], [36] can achieve better performance and deal 
with more sources. [9] and [36] are restricted to the array geom-
etry with two identical and closely-deployed uniform linear arrays 
(ULAs) to obtain an approximate shift invariance structure, imply-
ing their limited applicability.

Beamspace transformation is one way of reducing computa-
tional complexity and sometimes improving the estimation accu-
racy [37–40]. In this paper, we present a beamspace-based ap-
proach for estimating the angular parameters of ID sources. First 
of all, with generalized array manifold of the ULA, we obtain the 
beamspace array manifold by performing beamspace transforma-
tion on the observed vectors of the overlapping subarrays, and 
establish the generalized shift invariance structure in beamspace 
by choosing appropriate beamforming matrix. Then, the total least 
squares (TLS) method is adopted to estimate the nominal DOAs of 
ID sources. With the DOA estimates, the angular spread estimates 
are finally derived from the central moments of the angular dis-
tribution. Our approach does not require any spectral search and 
reduces the dimension of matrix operations, thus it is computa-
tionally more attractive than the existing techniques. Simulation 
results verify the effectiveness of the proposed algorithm.

The paper is organized as follows. In Section 2, we present the 
array signal model of ID sources and some necessary assumptions. 
In Section 3, an efficient beamspace-based approach for localiza-
tion of ID sources is described in detail. Computer simulation 
results are provided in Section 4, and conclusions are drawn in 
Section 5.

Notations The superscripts ∗, T , H , † and ′ denote the con-
jugate, transpose, conjugate transpose, pseudo-inverse and first-
order derivative, respectively. E{·} represents the statistical expec-
tation. IP stands for the P × P identity matrix, and 0(M−1)×1 is 
the (M − 1) × 1 vector of zeros. [·] j,k denotes the ( j, k)th entry 
of a matrix. diag[·] denotes a diagonal matrix and the values in 
the brackets constitute its diagonal elements. δ(·) is the Kronecker 
delta function.

2. Signal model and basic assumptions

Assume that the signals from K narrowband ID sources impinge 
on a ULA of M sensors. The received signal at the array can be 
expressed as

x(t) =
K∑

k=1

sk(t)
Lk∑

l=1

γk,la(θk,l(t)) + n(t) (1)

where t = 1, 2, . . . , N is the sampling time, and N is the num-
ber of snapshots; sk(t) is the complex-valued signal transmitted 
by the kth source; Lk is the number of rays inside the kth source 
and γk,l(t) is the complex-valued gain of the lth ray from the 
kth source; θk,l(t) ∈ (−π/2, π/2) is the DOA of the lth ray from 
the kth source; n(t) ∈ C

M×1 is the complex-valued additive noise 
vector, whose elements are spatially and temporally zero-mean 
white Gaussian processes with variance σ 2

n . The array manifold, 
a(θk,l(t)) ∈ C

M×1 is the response of the array corresponding to the 
DOA θk,l(t), which is given by

a(θk,l(t)) = [
1, e j� sin(θk,l(t)), . . . , e j(M−1)� sin(θk,l(t))

]
(2)

where � = 2πd/λ, d is the distance between two adjacent sensors, 
and λ is the wavelength of the impinging signal.

We may represent θk,l(t) as

θk,l(t) = θk + θ̃k,l(t) (3)

where θk is the nominal DOA of the kth source, i.e., the mean of 
θk,l(t); θ̃k,l(t) is the corresponding random angular deviation with 
zero mean and standard deviation σk , which is referred to as the 
angular spread.

Throughout this paper, the following assumptions are required 
to hold:

(i) The angular deviation, θ̃k,l(t) is temporally independent and 
identically distributed (i.i.d.) random variables with covariances:

E{θ̃k,l(t)θ̃k̃,l̃(t̃)} = σ 2
k δ(k − k̃)δ(l − l̃)δ(t − t̃) (4)

(ii) The ray gains γk,l , k = 1, 2, . . . , K , l = 1, 2, . . . , Lk , are tem-
porally white and are independent from ray to ray with zero mean 
and covariance:

E{γk,l(t)γ
∗

k̃,l̃
(t̃)} = σ 2

γk

Lk
δ(k − k̃)δ(l − l̃)δ(t − t̃) (5)

where σ 2
γk

is the ray gain variance from the kth source.
(iii) The source signals sk(t), k = 1, 2, . . . , K , t = 1, 2, . . . , N , are 

temporally i.i.d. zero-mean random variables with constant ampli-
tudes and covariance:

E{sk(t)sH
k̃

(t̃)} = σ 2
sk

δ(k − k̃)δ(t − t̃) (6)

where σ 2
sk

= E{|sk(t)|2} is the signal power of the kth source.
(iv) The source signals, angular deviations, ray gains and noise 

are mutually uncorrelated.
(v) The number of sources K , is known a priori and the number 

of sensors M is larger than K .
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