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In this paper, one robust identification method is proposed for the discrete-time linear systems with 
unknown time-varying disturbance. The disturbance is considered as a time-varying parameter for 
tracking estimation. A robust recursive least squares method is proposed using a forgetting factor. 
Moreover a new forgetting scheme to update the covariance matrix is developed to improve the stable 
convergence property of the time-invariant model parameters and the tracking performance of time-
varying disturbance. The convergence performance of parameter estimation is analyzed with a proof. 
Two examples with different types of time-varying disturbance are shown to illustrate the effectiveness 
and advantage of the proposed method.
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1. Introduction

When performing identification tests, the actual processes often 
encounter unknown disturbance [1–3], e.g. in a fuel cell system in 
the presence of time-varying disturbances [4]. The process sampled 
output data include unknown disturbance signals, which will cause 
undesired estimation error [5]. Some robust identification methods 
have become increasingly appealed in the recent years [6–8]. For 
practical applications, any identification methods should take into 
account the effect of ubiquitous time-varying disturbances and be 
as insensitive to disturbance changes as possible [9].

Although identification under time-varying load disturbances 
has attracted considerable attention, it has not been fully solved 
because of the unpredicted and unmeasured properties of such dis-
turbances [10]. In discrete-time domain, a few robust identification 
algorithms were presented to deal with stationary stochastic noise 
for both open-loop and closed-loop identification tasks in the liter-
ature [11]. The error-bounded parameter estimation algorithm was 
proposed by using a membership set to deal with unknown but 
bounded disturbance [12]. Errors-in-variables methods were devel-
oped to obtain consistent estimation of the system input and out-
put suffering from colored noises [13,14]. A filter technique was re-
cently developed to estimate the Box–Jenkins model [15], using an 
auxiliary model to estimate the unknown noise-free output. A re-
fined instrumental variable (RIV) approach was recently developed 
by using a unified operator to estimate the output error model 
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subject to colored noise[16]. A bias compensation identification al-
gorithm was proposed for ARMAX model subject to non-stationary 
disturbances in [17]. A robust estimation method was proposed 
by developing a filter to eliminate sinusoidal disturbances from 
sampled data [18]. By introducing sparse representations of the 
disturbances and using l1-regularization with iterative reweighting 
to solve the sparse optimization problem, the cited ref. [19] pre-
sented a robust identification method for system in the presence 
of outliers and trends.

Based on the time-varying parameters estimation theory in 
[20], the unknown time-varying disturbance is considered as a 
slow time-varying parameter to estimate in this paper. The recur-
sive least squares (RLS) method with forgetting factor has been 
widely used to track time-varying parameters [20–22]. The stan-
dard RLS algorithm uses a constant forgetting factor to compromise 
the performance among convergence rate, tracking, misadjustment, 
and stability, which may lead to the covariance ‘wind-up’ problem 
for poor excitation [23]. During poor excitations old information 
is continuously forgotten while very little new dynamic informa-
tion comes in, which might lead to the exponential growth of 
the covariance matrix, and the estimator becomes extremely sen-
sitive and susceptible to computational errors [24]. Thus some 
variable forgetting factor methods are proposed to avoid covari-
ance ‘wind-up’ problem [24–26]. Since the system parameters are 
time invariant and the load disturbance parameter is time variant, 
the LS method with single forgetting factor scheme cannot realize 
which parameters cause the estimation error and gives poor esti-
mation performances [25]. Thus some methods deal with models 
having time-varying parameters which change with different rates. 
One method is the directional forgetting scheme [26], which fixes 
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one problem that the incoming information is not uniformly dis-
tributed over all parameters. Thus, the estimator wind-up can also 
occur when we estimate multiple parameters that each (or some) 
varies with a different rate. Therefore, a vector-type forgetting is 
proposed in [27] to assign different forgetting factors to different 
parameters and distribute incoming information uniformly over all 
parameters. By using a matrix pseudo-inversion lemma and an ex-
ponential weighting scheme, an extended recursive least-squares 
(ERLS) algorithm was developed for solving the over-determined 
normal equations in the instrumental variable approaches and es-
timation the time-varying model parameter [28]. By using two 
standard RLS methods and forgetting factors, an iteractive esti-
mation strategy was used to identify a Hammerstein-type output 
error (OE) model or dual-rate sampled systems subject to load dis-
turbance [29,30]. Inspired by the above methods dual forgetting 
factors are introduced to improve the tracking performance for 
time-varying disturbance.

In this paper, by extending the information vector, a robust re-
cursive least squares (RLS) method is proposed, in which unknown 
time-varying disturbance is lumped into the model parameters for 
estimation. Considering that the disturbance is time-varying while 
the model parameters are time-invariant, a forgetting factors ma-
trix is introduced to improve the convergence rates of estimating 
the model parameters and the load disturbance response, respec-
tively. Base on the stochastic process theory, the convergence prop-
erty of the proposed algorithm is analyzed with a strict proof. The 
paper is organized as follows. In Section 2, the identification prob-
lem is presented. The proposed algorithm is proposed in Section 3. 
The convergence analysis is also given in Section 4. Two examples 
are presented in Section 5. Finally, conclusions are drawn in Sec-
tion 6.

2. Problem description

Considering the following discrete-time linear AutoRegressive 
eXogenous (ARX) system with unknown time-varying disturbance,

A
(
z−1)y(z) = B

(
z−1)u(z) + η(z) + v(z) (1)

where u(z) is the input excitation signal and generated by a zero-
order hold and η(z) is an unknown time-varying disturbance, 
which usually can not map the input–output causality and not be 
modeled with a constant parameterized noise model [4,17,30]. The 
polynomials A(z−1) and B(z−1) are coprime with the following 
forms,

A
(
z−1) = 1 + a1z−1 + · · · + ana z−na (2)

B
(
z−1) = b1z−1 + · · · + bnb z−nb (3)

Generally, the measurement noise v(z) is assumed to be a Gaus-
sian white noise with zero mean and unknown variance σ 2

v . v(z) is 
uncorrelated with the input sequence, u(z). The input signal se-
quences u(z) and the output signal sequences y(z) are assumed to 
be uniformly sampled with sampling interval T . The linear system 
is causal, i.e. y(z) depends on u(z1) for z1 ≤ z, but not on future 
values of u(z) and v(z).

Thus, the identification problem can be stated as: assuming that 
the degrees na and nb are known. The identification objective is to 
estimate the linear ARX model parameters, a1, . . . , ana , b1, . . . , bnb , 
by tracking estimation of the unknown time-varying disturbance.

3. Proposed algorithm

Firstly, denote the linear model parameter vector and observa-
tion vector, respectively, by

θs = [a1, . . . ,ana ,b1, . . . ,bnb ]T ∈ �ns (4)

ϕs(z) = [−y(z − 1), . . . ,−y(z − na), u(z − 1), . . . , u(z − nb)
]T

∈ �ns (5)

where ns = na + nb is the orders of the linear system model pa-
rameter.

For identification of the unknown time-varying disturbance, 
η(z) is assumed to be a slowly drifting parameter to be estimated, 
and its excitation signal is considered as the one [17,29]. We fur-
ther define the extended parameter vector and the corresponding 
extended observation vector as below.

θ(z) = [
a1, . . . ,ana ,b1, . . . ,bnb , η(z)

]T ∈ �ne (6)

ϕ(z) = [−y(z − 1), . . . ,−y(z − na), u(z − 1), . . . , u(z − nb),1
]T

∈ �ne (7)

where ne = na + nb + 1 is the order of the extended vector.
Hence, the plant description in Eq. (1) can be rewritten as the 

following linear regression form,

y(z) = ϕT (z)θ(z) + v(z) (8)

Define the following cost function with a forgetting factor,

J (z, θ̂ ) = 1

2

z∑
i=1

λz−i[y(i) − ϕT (i)θ̂ (i)
]2

(9)

Taking the first derivative of J (z, θ̂ ) with respect to θ̂ , we have

∂ J (z, θ̂ )

∂θ̂
= −

z∑
i=1

λz−iϕ(i)
[

y(i) − ϕT (i)θ̂ (i)
]

(10)

Letting Eq. (10) be zero, we obtain the least square estimation 
method

θ̂ (z) =
[

z∑
i=1

λz−iϕ(i)ϕT (i)

]−1

×
[

z∑
i=1

λz−iϕ(i)y(i)

]
(11)

By defining

P (z) =
[

z∑
i=1

λz−iϕ(i)ϕT (i)

]−1

(12)

and we have

P−1(z) =
z∑

i=1

λz−iϕ(i)ϕT (i)

= λ

z−1∑
i=1

λz−1−iϕ(i)ϕT (i) + ϕ(z)ϕT (z)

= λP−1(z − 1) + ϕ(z)ϕT (z) (13)

Define the gain vector

K (z) = P (z)ϕ(z) (14)

We can get a robust RLS method with a forgetting factor as 
follows

K (z) = P (z − 1)ϕ(z)

λ + ϕT (z)P (z − 1)ϕ(z)
(15)

P (z) = 1

λ
P (z − 1)

[
Inm×nm − K (z)ϕT (z)

]
(16)

θ̂ (z) = θ̂ (z − 1) + K (z)
[

y(z) − ϕT (z)θ̂ (z − 1)
]

(17)
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