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Due to its fast convergence rate, the recursive least-squares (RLS) algorithm is very popular in many 
applications of adaptive filtering, including system identification scenarios. However, the computational 
complexity of this algorithm represents a major limitation in applications that involve long filters. 
Moreover, when the parameter space becomes large, the system identification problem is more 
challenging and the adaptive filters should be able to cope with this aspect. In this paper, we focus 
on the identification of bilinear forms, where the bilinear term is defined with respect to the impulse 
responses of a spatiotemporal model. From this perspective, the solution requires a multidimensional 
adaptive filtering technique. Recently, the RLS algorithm tailored for bilinear forms (namely RLS-BF) 
was developed for this purpose. In this framework, the contribution of this paper is mainly twofold. 
First, in order to reduce the computational complexity of the RLS-BF algorithm, two versions based 
on the dichotomous coordinate descent (DCD) method are proposed; due to its arithmetic features, 
the DCD algorithm represents one of the most attractive alternatives to solve the normal equations. 
However, in the bilinear context, we need to consider the particular structure of the input data and 
the additional related challenges. Second, in order to improve the robustness of the RLS-BF algorithm in 
noisy environments, a regularized version is developed, together with a method to find the regularization 
parameters, which are related to the signal-to-noise ratio (SNR). Furthermore, using a proper estimation 
of the SNR, a variable-regularized RLS-BF algorithm is designed and two DCD-based low-complexity 
versions are proposed. Due to their nature, these variable-regularized algorithms have good robustness 
features against additive noise, which make them behave well in different noisy condition scenarios. 
Simulation results indicate the good performance of the proposed low-complexity RLS-BF algorithms, 
with appealing features for practical implementations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In many system identification problems, the recursive least-
squares (RLS) is the algorithm of choice. The main reason behind 
its popularity is its fast convergence rate, which is achieved even 
for highly correlated input signals [1–4]. From this point of view, 
it often outperforms, and by far, the family of least-mean-square 
(LMS) algorithms. On the other hand, the price to pay for this ad-
vantage is a significant increase in the computational complexity.
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Several interesting solutions to reduce the complexity of the 
RLS algorithm (while preserving its fast convergence rate) can be 
found in literature. Among these, the dichotomous coordinate de-
scent (DCD) method proposed by Zakharov and co-authors [5–7] is 
one of the most attractive approaches. This solution represents a 
computationally efficient alternative for solving the normal equa-
tions of the RLS algorithm. It does not need multiplications or divi-
sions (these operations are simply replaced by bit-shifts), but only 
additions, so that it is well suited to hardware implementation. 
Consequently, the resulting RLS-DCD algorithm [6] was successfully 
applied in the context of different applications, e.g., see [8–17] and 
the references therein. Most of these applications are related to 
system identification problems, like echo cancellation, where the 
length of the impulse response is significant (e.g., hundreds of co-
efficients); therefore, the gain in terms of reducing the complexity 
is also important.
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Nevertheless, the system identification problems are more chal-
lenging when the parameter space becomes larger [18,19]. In the 
literature, such frameworks can be found in conjunction with dif-
ferent applications, e.g., [20–29]. For example, in the context of 
multichannel equalization [20], the coefficients of the channel and 
equalizer can be combined in a bilinear form. A similar form can 
be exploited in the context of nonlinear acoustic echo cancellation 
[21,22], where the nonlinear echo path is modeled by combining 
a linear filter with a nonlinear function, so that the global sys-
tem resembles (to some extent) the Hammerstein model [30]. Also, 
similar approaches can be found in the context of target detec-
tion [23], system separability problems [24–26], source separation 
[27], multiple-input multiple-output (MIMO) communication sys-
tems [28,29], etc. Most of these approaches are related to the 
identification of bilinear (or trilinear) forms, based on tensor de-
composition and modeling. In this manner, different problems of 
high dimension can be reformulated, so that low-dimension tech-
niques are “tensorized” together [31,32]. Furthermore, the solu-
tions can be found based on multidimensional adaptive filtering 
techniques.

In this paper, we focus on the identification of bilinear forms, 
while the extension to a higher dimension should be straightfor-
ward. In this context, the bilinear term is defined with respect to 
the impulse responses of a spatiotemporal model, which resembles 
a multiple-input/single-output (MISO) system. In [33], an iterative 
Wiener filter was developed for the identification of such bilinear 
forms. Solutions based on the LMS and normalized LMS (NLMS) al-
gorithms can be found in [18,34], and [35], respectively. Recently, 
[36] provides an overview of these algorithms (including the RLS 
algorithm tailored for the identification of bilinear forms) and a 
detailed analysis of the LMS-based solutions. As shown in [36] and 
[37], the RLS algorithm for bilinear forms, namely RLS-BF, clearly 
outperforms its LMS-based counterparts in terms of convergence 
rate. However, the computational complexity of the RLS-BF algo-
rithm is significantly higher.

Motivated by the appealing performance of the RLS-BF algo-
rithm, the contribution of this paper is focused on two main di-
rections. First, we aim to develop low-complexity versions of the 
RLS-BF algorithm based on the DCD method [5,6], taking into ac-
count the particular structure of the input data (specific to the case 
of bilinear forms), which brings additional challenges. Second, in 
order to improve the robustness of the system in noisy environ-
ments, we propose a regularized version of the RLS-BF algorithm. 
Moreover, the regularization parameters are iteratively adjusted so 
that the algorithm can behave well in different noisy conditions 
and especially against noise variations.

To this purpose, the rest of the paper is organized as follows. 
Section 2 provides a brief review of the bilinear model and the 
RLS-BF algorithm. In Section 3, two low-complexity versions of the 
RLS-BF algorithm are proposed, using the DCD method as an alter-
native way to solve the normal equations. Section 4 presents a reg-
ularized version of the RLS-BF algorithm, together with a method 
to select the optimal regularization parameters. Since the values 
of these parameters are related to the signal-to-noise ratio (SNR), 
a simple and practical way to estimate the SNR is presented in Sec-
tion 5, which leads to a variable regularized RLS-BF algorithm; in 
addition, two low-complexity versions of this algorithm are devel-
oped (also based on the DCD method). Simulation results provided 
in Section 6 indicate the good performance of the proposed al-
gorithms, which could represent appealing solutions for bilinear 
system identification problems. Finally, Section 7 concludes this 
work and outlines some perspectives.

2. Bilinear model and the RLS-BF algorithm

Let us consider the framework of the bilinear model from [36], 
where the reference signal is defined as

d(n) = hT X(n)g + w(n)

= y(n) + w(n), (1)

where n is the discrete-time index, the superscript T denotes the 
transpose operator, h and g are the two impulse responses of the 
system of lengths L and M , respectively,

X(n) = [
x1(n) x2(n) · · · xM(n)

]
is the zero-mean multiple-input signal matrix of size L × M ,

xm(n) = [
xm(n) xm(n − 1) · · · xm(n − L + 1)

]T

is a vector containing the L most recent samples of the mth (m =
1, 2, . . . , M) input signal, and w(n) is the zero-mean additive noise. 
It is assumed that all the signals are real valued, and X(n) and 
w(n) are uncorrelated. From (1), we can define the signal-to-noise 
ratio as

SNR = σ 2
y

σ 2
w

, (2)

where σ 2
y = E

[
y2(n)

]
and σ 2

w = E
[

w2(n)
]

are the variances of 
y(n) and w(n), respectively, with E[·] denoting mathematical ex-
pectation.

As we can notice, the model from (1) resembles a simplified 
MISO system. The two impulse responses, i.e., h and g, correspond 
to the temporal and spatial parts of the system, respectively. It is 
clear that for every fixed h, y(n) is a linear function of g, and for 
every fixed g, it is a linear function of h. Thus, y(n) is bilinear in 
h and g [38].

Based on the vectorization operation (i.e., conversion of a ma-
trix into a vector [38]), the matrix X(n) of size L × M can be 
rewritten as a vector of length ML:

vec [X(n)] = [
xT

1 (n) xT
2 (n) · · · xT

M(n)
]T

= x̃(n). (3)

Therefore, the output signal y(n) results in

y(n) = tr

[(
hgT

)T
X(n)

]
= vecT

(
hgT

)
vec [X(n)]

= (g ⊗ h)T x̃(n)

= fT x̃(n), (4)

where tr[·] denotes the trace of a square matrix, ⊗ is the Kro-
necker product, and f = g ⊗ h is the spatiotemporal (or global) 
impulse response of length ML, which is the Kronecker product 
between the individual impulse responses g and h. Consequently, 
the reference signal in (1) becomes

d(n) = fT x̃(n) + w(n). (5)

The goal is to identify the temporal and spatial impulse re-
sponses h and g with two adaptive filters:

ĥ(n) = [
ĥ1(n) ĥ2(n) · · · ĥL(n)

]T
,

ĝ(n) = [
ĝ1(n) ĝ2(n) · · · ĝM(n)

]T
.
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