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a  b  s  t r  a  c  t

This  paper  proposes  an EMG  recognition  system  of grasping  force  on  the  basis  of  the  pattern  recognition,
which  can  classify  the  surface  electromyography  (sEMG)  signals  from  2  electrodes  and  recognize  the
grasping  force.  Ten  characteristics  in  time  domain  and  frequency  domain  are  chosen  as the  primary
features  to combine  feature  sets,  to  obtain  an  optimal  feature  set.  The  linear  discriminant  analysis  (LDA)
is used  to  reduce  the  dimension  of the  features  vector  to a one-dimensional  vector  matrix,  and  pattern
recognition  to classify  and  recognize  it.  In  online  recognition,  to obtain  continuous  recognition  values,
the  quadratic  polynomial  fitting  is utilized  to find  the  relationship  between  the  one-dimensional  vector
matrix  and  grasping  forces.

©  2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Myoelectric control has been widely used to control periph-
eral devices [1,2], especially prosthetic limb [3], as the surface
electromyography (sEMG) signal is a noninvasive electrical biosig-
nal and can represent the muscles activities. The EMG  control get
great development from using the correlation between EMG  signal
amplitude and gestures to using pattern recognition [4]. The pat-
tern recognition method in a supervised way is widely employed
to control the prosthetic hands to perform different prehensile ges-
tures. The preprocessing parts of the pattern recognition method
include data preprocessing, data windowing, feature extraction and
classification [4,5]. The corresponding features are extracted from
various muscle activities, and then the features are assigned to
classes which represent relevant limb motions, that are patterns.
These patterns are learned by an algorithm which is then used to
classify the limb motions. In our previous research [6,7], a myoelec-
tric control system using 2 acquisition electrodes which can classify
8 prehensile hand gestures has been built. Pattern recognition is
employed with Mean Absolute Value (MAV), Variance (VAR), the
fourth-order Autoregressive Coefficient (AR) and Sample Entropy
(SampEn) as the optimal features set. LDA is utilized to reduce the
dimension of the features. A combination of pre-smoothing and
post-smoothing method makes the recognition of continuous ges-
tures possible. Liu et al. proposed a method, namely Mixed-LDA,
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which computes the parameters of LDA through combining the
model estimated on the incoming training samples of the current
day with the prior models available from earlier days [8]. Lin et al.
proposed an algorithm only needs very limited training data using
shrinkage approach, information transfer rate and K-L divergence
[9]. Uslu and Baydere proposed a novel real time activity recogni-
tion approach, called RAM, presenting a non-invasive method with
a single accelerometer [10]. Rubiano et al. proposed a new elbow
flexion and extension identification scheme [11].

In order to grasping objects stably, the functions of the pros-
thetic hand are not only recognizing the relevant motion that the
sEMG signals represent, but also estimating the grasping force to
hold the object. Therefore, the information of grasping force should
be extracted from the sEMG signal to improve the performance
of myoelectric control system. To find the relationship between
sEMG and grasping force, there are mainly two  ways, mathematic
model method [12–16] and machine learning method [17]. The for-
mer  builds mathematic model between EMG  signals, muscle-based
model and muscle force, and predicts the grasping force. The later
finds the nonlinear relationship with EMG  signals as input and mus-
cle force as output. The common methods employed are multiple
nonlinear regression [17], support vector machine (SVM) [18–20],
artificial neural network (ANN) [21,22], gene expression program-
ming (GEP) [23], etc. Manal et al. presented a formulation for a
one-parameter transformation model that accounted for the type
of physiological nonlinearities observed at low levels of force [14].
Wei  et al. developed a wavelet-based method to predict muscle
forces from sEMG signals [15]. Fang et al. established a mathematic
model for muscle activation extraction to describe the relation-
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Fig. 1. The position of FPL and FDS [24].

ship between finger pinch forces and sEMG signal, and the genetic
algorithm was employed to optimise the coefficients [16]. Yang
et al. demonstrated the use of Locally Weighted Projection Regres-
sion (LWPR), ANN and SVM to represent relationship of the hand’s
enveloping force and 6 channel sEMG signals, and showed that the
SVM method is better than LWPR and ANN to estimate hand grasp-
ing force from sEMG signals for force control [18,19]. Choi et al.
implemented an ANN to map  the SEMG at three myoelectric sites
to the palmar pinch force, with a Normalized Root Mean Squared
Error (NRMSE) of 0.08 [20]. Xu et al. used Integrated Electromyo-
graphy (IEMG), Root Mean Square (RMS), window sample entropy
(WSE) and window kurtosis (WK) to feed into the wavelet neural
network to predict the muscle force with a normalized mean square
of 0.58 [22]. Yang et al. utilized Gene Expression Programming
(GEP) to derive a new empirical model of handgrip sEMGCforce
relationship, using the input vectors of 10 features of the sEMG
time domain extracted from homogeneous subsets, which showed
that the proposed GEP model is relatively fast, simple and excellent
for predicting handgrip forces based on sEMG signals [23].

To improve the myoelectric control system, the grasping force
estimation is added. The developed EMG  recognition system can
classify the sEMG signals and recognize the grasping force. An
optimal feature set of grasping force is obtained from ten char-
acteristics in time domain and frequency domain by experiments.
In online recognition, the quadratic polynomial fitting is utilized to
find the relationship between the one-dimensional vector matrix
and grasping force.

2. Methods

2.1. Data collection

According to the range of grasping forces observed in human
daily-life activities, the myoelectric control system identifies 6
grasping forces (0 kg, 2 kg, 4 kg, 6 kg, 8 kg and 10 kg). The flexor
pollicis longus (FPL) and the flexor digitorum surperficials (FDS)
(Fig. 1) are selected as the relevant muscles to acquire the sur-
face electromyography (sEMG) signals. Biometrics DataLog (Fig. 2),
including two SX230 bipolar myoelectric sensors, a G100 grasping
force sensor, a DataLog data collector, and the Biometrics DataLog
software, are used to collect the sEMG signals.

2.2. Feature extraction

Long EMG  signals for the classification will cause a sense of
perceptible delay. Therefore, data windowing is used as the pre-
process of the EMG  signals. Due to the instability and randomness
of EMG signals, it is difficult to acquire a right decision of grasp-
ing force from only one data window. Constructing a sequence of
decisions and making a final prediction may  raise the accuracy
but needs more time. The overlapping windowing scheme is put
forward to solve the problem. A data windowing in the scheme con-
tains a majority of EMG signals of the previous window and EMG

Fig. 2. Biometrics DataLog.

signals in the incremental part. Compared with the general win-
dowing scheme, the operation time of the overlapping windowing
scheme is shorter, which could meet the delay requirement that the
time interval is less than 300 ms.  What is more, the overlapping
windowing scheme also improves the utilization of EMG  signals.
The window length is 250 ms  and the increment is 70 ms  in this
paper.

The accuracy of the pattern recognition in sEMG greatly depends
on the selection and extraction of features [1]. In this paper, ten
features including MAV, VAR, RMS, Waveform Length (WL), Wilson
Amplitude (WAMP), Zero Crossings (ZC), AR, SE, Mean Power (MNP)
and Median Frequency (MDF) are chosen to analyze the accuracy
rate of the pattern recognition.

MAV  can be calculated by the following formula:

MAV  = 1
N

N∑
i=1

|s(i)| (1)

where s(i){1 ≤ i ≤ N} is used to denote the ith point in a sEMG win-
dow. N is the length of the window.

In theory, the mean of the sEMG signals is zero. Therefore, VAR
of the sEMG signals can be obtained by:

VAR = 1
N − 1

N∑
i=1

s(i)2 (2)

The definition of RMS  is shown in following equation.

RMS =

√√√√ 1
N

N∑
i=1

s(i)2 (3)
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