
Microprocessors and Microsystems 63 (2018) 237–248

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

BRAM-based function reuse for multi-core architectures in FPGAs

Pedro H. Exenberger Becker ∗, Anderson L. Sartor , Marcelo Brandalero ,
Antonio C. Schneider Beck

Instute of Informatics, Universidade Federal do Rio Grande do Sul 91501-970, Brazil

a r t i c l e i n f o

Article history:

Received 19 March 2018

Revised 19 July 2018

Accepted 19 September 2018

Available online 28 September 2018

Keywords:

Function-reuse

Soft-processors

Multi-core architectures

FPGA

a b s t r a c t

Modern processors contain several specific hardware modules and multiple cores to ensure performance

for a wide range of applications. In this context, FPGAs are frequently used as the implementation plat-

form, since they offer architecture customization and fast time-to-market. However, many of them may

not have the needed resources to implement all the necessary features, because of costs or complexity of

the system to be implemented. When some needed functionalities do not fit in the target, they must be

mapped into the much slower software domain. In this work, we exploit the fact these designs usually

underuse their available BRAMs and propose a low-cost hardware-based function reuse mechanism for

FPGAs, recovering some of the performance lost from the software part of applications that could not

be implemented in hardware logic, with minimal impact on LUT usage. This is achieved by saving the

inputs and outputs of the most frequently executed functions in a BRAM-based reuse table, so the next

function executions with the same arguments can be skipped. This mechanism supports both precise and

approximate modes and is evaluated with a 4-issue VLIW processor implemented in HDL, also consid-

ering a multi-core environment. Precise reuse, in single and multi-core scenarios, is assessed by running

applications that use a software library to emulate floating point operations. Approximate reuse is eval-

uated over a single-core image-processing application that tolerates a certain level of error. Our scheme

achieves 1.39 × geomean speedup in the precise single-core, while the multi-core case demonstrates ap-

plication improvements from 1.25 × to 1.9 × when we start sharing the reuse table. In the approximate

scenario, we achieve 1.52 × speedup with less than 10% error.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The implementation of processors in Field-Programmable Gate

Arrays (FPGAs), also known as soft-core processors, provides

known benefits when designing a computational system. For ex-

ample, the possibility to reprogram FPGAs guarantees good time-

to-market, fast architectural customization and integration of hard-

ware accelerators (either by writing new modules or using off-the-

shelf components), as well as obsolescence mitigation (since the

hardware description can be easily ported to the latest FPGAs [1]).

These processors have gained space in solutions to specific pur-

pose problems by using modules that can be configured at synthe-

sis time.

At the same time, nowadays’ systems require high perfor-

mance for a wide range of applications, increasing the demand

for logic resources. Modern Multiprocessor System on Chip (MP-

∗ Corresponding author.

E-mail addresses: phebecker@inf.ufrgs.br (P.H.E. Becker), alsartor@inf.ufrgs.br

(A.L. Sartor), mbrandalero@inf.ufrgs.br (M. Brandalero), caco@inf.ufrgs.br (A.C.

Schneider Beck).

SoCs) [2] usually comprise multi-core general purpose processors

and dedicated hardware like Floating-Point Units (FPUs), security

and cryptography modules, and coders/decoders for multimedia

[3] . However, FPGA designs require more area and energy com-

pared to Application Specific Integrated Circuit (ASICs) [4] . There-

fore, the resources available in an FPGA may become a limiting fac-

tor to implement all the needed features. When specialized hard-

ware cannot fit inside the FPGA, some of its functionalities must be

mapped into the software domain, which is significantly slower.

In some cases, the Block Random Access Memories (BRAMs)

present in these FPGAs may be underutilized when implementing

such complex logic driven designs. Table 1 shows the utilization of

Look-Up Tables (LUTs), Registers, and BRAMs of three soft-core pro-

cessors (arranged in order of complexity) implemented in a Virtex-

5 xc5vlx110t, in their default configuration [5–7] . As one can ob-

serve, for complex soft-core processors, such as the OpenSparc T1

(a single-issue, six-stage pipeline supporting up to four concurrent

threads), BRAMs are not utilized in the same proportion as regis-

ters and LUTs. This comes from the observation that BRAMs usually

present a limited number of ports (in most cases, 2 for reading and

1 for writing), which forbids many possible uses for them, such as

https://doi.org/10.1016/j.micpro.2018.09.007

0141-9331/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.micpro.2018.09.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2018.09.007&domain=pdf
mailto:phebecker@inf.ufrgs.br
mailto:alsartor@inf.ufrgs.br
mailto:mbrandalero@inf.ufrgs.br
mailto:caco@inf.ufrgs.br
https://doi.org/10.1016/j.micpro.2018.09.007

238 P.H.E. Becker et al. / Microprocessors and Microsystems 63 (2018) 237–248

Table 1

Resource utilization of three soft-core designs.

Design % Slice LUT % Slice Register % BRAM

OpenRisc1200 5% 2% 7%

Leon 3 27% 16% 15%

OpenSparc T1 88% 56% 40%

the register file in multiple-issue processors, which need multiple

read ports to properly feed all the available functional units [8] .

Hence, BRAMs are usually used only to implement moderate-sized

caches, common in the scope of soft-cores running in embedded

environments. In cases when more BRAMs are needed, such as in

multi-core architectures where a large amount of shared memory

is a must, BRAM occupation raises. On the other hand, the addi-

tion of multiple application-specific modules and the use of more

robust General Purpose Processors (GPPs) designs (e.g.: Multiple-

issue) put the pressure back on LUTs requirements.

Considering this scenario, this work proposes a function reuse-

based technique that leverages those idle BRAMs, resulting in a

low-cost and generic hardware solution to speed up specific soft-

ware parts without the need for implementing dedicated hardware

components. Each time a function executes, its results are dynam-

ically stored in a BRAM RT and, when the same function with the

same input arguments is called again, the output of this function

can be directly fetched from the RT, avoiding re-calculation and

improving performance.

Our reuse concept can also be used within a soft-core multi-

processor design, where it is possible to share the RT among cores.

Thus, programs that are simultaneously running on the soft-core

can all update the RT as they calculate function results, and fetch

results calculated by other processes from the RT. Since multi-

thread programs (or multiples instances of a program) run over

the same code, they benefit from such arrangement, increasing the

reuse possibilities. At the same time, the introduction of a shared

RT uses even less FPGA logic resources than if we would introduce

a dedicated RT for each core, as we have a single and centralized

(instead of replicated) control logic. By using this approach, we can

accelerate multiple cores while proportionally reducing the impact

of an RT in the FPGA design.

Going one step further, we also show that, by tuning how the

BRAM RT is accessed, it is possible to gracefully switch from pre-

cise to approximate reuse using the same hardware structure. This

can significantly increase reuse rates and performance at the ex-

pense of output quality in some specific classes of applications.

This reuse mechanism that uses BRAMs and is configurable for

both precise and approximate modes can be easily used to opti-

mize the execution of any given software library, avoiding its hard-

ware implementation counterpart and resulting in significant sav-

ings in design time, LUTs and registers.

We evaluate our technique by implementing it in a complex

4-issue Very Long Instruction Word (VLIW) soft-core described

in Hardware Description Language (HDL). First, we investigate six

single-core applications that process a significant amount of FP op-

erations in different scenarios, including one where implementing

a hardware FPU would prevent the addition of any new dedicated

hardware because of the limited amount of resources available. In

this case, we apply the technique to optimize a soft-float library

that uses integer units to emulate double precision FP operations

that would otherwise have to be implemented in hardware. We

show that an average speedup of 1.39 × is achieved when consid-

ering an RT that fits in five different test targets. The average can

be as high as 1.87 × for targets with larger BRAMs.

Then, we consider a multicore environment, where multiple in-

stances of each of the benchmarks execute on different cores with

distinct inputs. We consider two different scenarios w.r.t. the RT:

one individual RT per core; and one shared RT, where all cores ac-

cess it when reuse is needed. We demonstrate that cores sharing

the RT can reach performance levels as the former case (a dedi-

cated RT per core), but demanding less FPGA BRAM, which can be

particularly important if the target device has only a few BRAM

blocks. We also present a case where a shared RT even improves

performance of a particular instance of the benchmark executing

on a core with its own private RT, from 1.25 × to 1.9 × .

Finally, for the approximate case, we evaluate an image pro-

cessing filter software that tolerates a certain error level. We ap-

ply our technique over a set of 30 images, achieving an average

speedup of 1.52 × with less than 10% error (standard tolerable er-

ror rate for approximate image processing [9]), and reaching up to

2.97 × when output quality is slightly more relaxed (around 17%

error rate).

Since our approach needs a simple mechanism to work, the us-

age of slice registers and slice LUTs increases by 16.56% and 3.43%

respectively in the single-core system, compared to 140% and 48%

for an FPU or 11% and 13% for a dedicated image filter. When con-

sidering a multi-core system with a shared RT, we show that the

use of slice registers can be amortized in 17.66% and slice LUTs in

3.06% in a quad-core system, as a result of logic replication avoid-

ance.

The upcoming sections are organized as follows. Related

work about different reuse approaches is covered in Section 2 .

Section 3 discusses the implementation of the work. Results are

presented and discussed in Section 4 . Section 5 states conclusions

and future work.

2. Related work

This section presents related work on reuse for both single-core

(Section 2.1) and multi-core (Section 2.2) environments, followed

by works that exploit approximate reuse (Section 2.3).

2.1. Reuse in single-Core environments

A variety of works has discussed computation reuse [10] . Im-

plementations vary from software (where reuse is also known as

memoization [11]) to hardware-based solutions and cover differ-

ent granularities of code. In [12] , dynamic instruction reuse is

presented with execution-driven simulation. The goal is to avoid

re-execution of instructions in an out-of-order processor. Instruc-

tionsâ;; source registers are the inputs, and its results are the out-

put. The scheme is enhanced with control of dependency links

among instructions, providing reuse of a set of dependent instruc-

tions. Authors in [13] proposed the reuse of FP instructions only,

focusing on multimedia applications. For each function unit that

takes more than a cycle to execute (like an FP divider or multi-

plier), a MEMO-TABLE is used to store the results. Average speedup

between 8% and 22% is achieved. Despite a hardware scheme being

discussed, the results are taken from an instruction-level simulator.

Reuse of a set of instructions within a basic block is consid-

ered in [14] and simulated using SimpleScalar [15] . The source

operands (registers or memory) of each instruction inside a basic

block are considered as part of the input. The values written to

any register or memory location are considered as part of the out-

put. Their work shows performance improvements of up to 14%. A

similar system is proposed over trace level (a set of sequential ba-

sic blocks) in [16] . In this case, less reusability is found compared

to instruction reuse, but more speedup is obtained since larger

chunks of code are involved.

The authors in [17] introduced the concept of dynamic function

result reuse. In this case, only pure functions (global variables free,

Download	English	Version:

https://daneshyari.com/en/article/11032901

Download	Persian	Version:

https://daneshyari.com/article/11032901

Daneshyari.com

https://daneshyari.com/en/article/11032901
https://daneshyari.com/article/11032901
https://daneshyari.com/

