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A B S T R A C T

Motion of drops and bubbles plays a critical role in the efficiency of industrial operations such as extraction. As
the drop moves in the continuous phase, the tangential shear stress induced by the continuous fluid at the drop
interface results in internal circulation, which may enhance transport of components and energy between the
dispersed phase (drop) phase and the continuous phase. In the present study, computational fluid dynamics
(CFD) simulations have been used to study this aspect in detail. Coupled calculations for the two phases have
been carried out for fluid flow over a spherical, non-deformable drop of a given diameter. The predicted internal
circulation is validated by comparing with analytical results for very low Reynolds numbers and experimental
data at higher Re. The calculation framework is then used to study the convective-diffusive heat transfer to the
drop for various combinations of Re and Pr. The heat transfer within the drop is found to comprise of three
regimes, two diffusion controlled heat transfer regimes (initial and final) connected by an intermediate con-
vection controlled heat transfer regime. The heat transfer enhancement by convection has been deduced and is
found to depend both on Re and Pr. A dimensionless correlation has been developed to predict the convective
heat transfer enhancement.

1. Introduction

Dispersions of bubbles and drops in liquids are often encountered in
industrial operations. In processes such as liquid-liquid extraction, the
dispersion of one fluid in another fluid and the motion of bubbles and
drops play a critical role in the efficiency of operation. Unlike rigid
spheres, the tangential stress caused by the continuous fluid at the in-
terface results in internal circulation within the drops which reduces
the drag and hence a fluid sphere moving in an immiscible liquid will
have a higher velocity compared to a solid sphere of same size and
density [1–3]. In the presence of impurities, the interfacial motion will
be hindered and the fluid sphere will behave more or less like a solid
sphere [4,5]. The rate of heat transfer and mass transfer of solute be-
tween the outer fluid and the drop can be affected by this internal
circulation [6,7] and hence the hydrodynamics study of motion of
drops through an immiscible fluid is important. For example, the Flue
Gas Desulfurization (FGD) process used to remove SO2 present in flue
gas from a coal or oil fired power plant involves contacting of spray of
lime or limestone slurry with the flue gas [8–10]. The relative motion
between the slurry drops and flue gas causes circulation within slurry
droplets which in turn influences the absorption of SO2 at the interface
and subsequent dissolution and reactions occurring inside the drop and

the heat transfer associated with these reactive processes. Analytical
expressions to predict hydrodynamics are available only for low Rey-
nolds numbers [11] and for higher Reynolds numbers correlations
based on experiments are to be used for the prediction. But the ex-
perimental results from different set ups can be different as the degree
of contamination varies from one set-up to another [3]. Moreover, in
some cases, like FGD and pollutant absorption in clouds, the Reynolds
number falls in the intermediate range, where correlations and ex-
periments are limited.

Hadamard and Rybczynski [1,11] solved the equations of motion
for circulating drops in the creeping flow regime and obtained an ex-
pression for terminal velocity, which is given by
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drop, ρ is density and the subscripts 'i' and 'o' represent internal (drop
side) and external (continuous phase) respectively.

Garner [2] studied circulation inside rising gas bubbles by visual
and indirect means. The steady motion of a liquid drop in another liquid
of comparable density and viscosity was studied and a correlation was
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developed by Harper and Moore [12] for high Re. Le Clair et al. [13]
were the first ones to use finite difference method to study steady
motion of water drops falling at terminal velocity in air. Abdel-Alim and
Hamielec [14] and Rivkind and Ryskin [15] developed predictive
equations to estimate drag coefficient for liquid- liquid systems for low
to moderate Re. Oliver and Chung [16] pointed out that there was a
discrepancy of 20% between these two equations and they failed to
match with known results for the limiting cases of Reynolds number,
namely, the case of Hadamard-Rybczynski [1,11] at very low Re and
the case of Harper and Moore [12] at high Re. They proposed a theo-
retical prediction of drag coefficient for Re between 0 and 2. Bhaga and
Weber [17] determined shapes and terminal rise velocities of bubble
rising in viscous liquids experimentally and visualized flow field around
a rising bubble through hydrogen bubble tracer technique. Shape re-
gimes and terminal rise velocities were correlated for Morton number
greater than 0.004 as a function of Re alone. Buoyancy-driven motion
of a deformable drop through a quiescent liquid was studied by Dandy
and Leal [18] for a wide range of Reynolds numbers
(0.005≤ Re≤ 250), Weber numbers (0.005≤We≤ 14), viscosity ra-
tios (0.001≤ λ≤ 1000) and density ratios (0.001≤ ζ≤ 1000), nu-
merically. Wegener et al. [3] measured the rise velocity of single to-
luene droplets rising in water ranging from 1mm to 7mm,
experimentally. They observed that for small droplets (diameter <
2.2 mm), no significant drop deformation occurred, for 2.2mm drops
fluctuations in velocity occurred initially, for drop diameter 2.4 mm
velocity reduced rapidly and oscillated around a lower value, and 3mm
drops were oblate but drop shape was preserved with maximum and
characteristic mean velocity close to each other. Drop rise velocities for
three systems representing high, intermediate and low interfacial ten-
sion were investigated experimentally and numerically using the finite
element modeling (FEM) code NAVIER by Baulmer et al. [5].

There are fewer studies of heat and mass transfer within drops with
internal circulation. Elperin et al. [19] observed a rise in temperature at
the gas-liquid interface due to heat released during absorption by a
falling liquid droplet. This increase in temperature reduces the equili-
brium absorbate concentration resulting in a decrease in the driving
force for mass transfer and mass flux during absorption. Wylock et al.
[20] studied numerically the mass transfer of a component in gas phase
into a liquid droplet in free fall followed by reaction of the absorbed
component in the liquid phase. Mass transfer in droplets moving in a
quiescent ambient liquid was studied numerically by Wegener et al.
[21] without considering chemical reaction, heat transfer and surfac-
tants. The need to consider mutual coupling of fluid dynamics and mass
transfer in the case of droplets was discussed by them.

The objective of the present work is to study the heat transfer within
a fluid drop moving through another immiscible fluid which is at a
higher temperature. The hydrodynamics for this was obtained by
modeling the two-phase flow system as two single phase flow systems
coupled through shear and velocity boundary conditions in a compu-
tational fluid dynamics (CFD) simulation platform. This enables accu-
rate treatment of the interface in terms of the momentum and mass
exchanges across it. It also obviates the need for a time-dependent so-
lution which is required when conventional two-fluid models are used
in combination with the volume of fluid (VOF) method [22] or the
level-set (LS) method [23] for the resolution of the interface. The need
for very fine grids, the attendant very small time steps required for a
stable solution, and the need for interface reconstruction make these
methods computationally expensive [24]. These problems can be
avoided in the present approach.

2. Problem formulation

2.1. Hydrodynamics

The two-phase flow problem of movement of a spherical drop in an
immiscible liquid is decoupled into two single phase flow problems,

namely, Model 1 and Model 2, representing respectively the flow over
and flow inside the drop. Here, Model 1 constitutes the continuous
phase (Fig. 1a) and Model 2 represents the drop/bubble (Fig. 1b). In
both models, single-phase, constant-property, laminar form of Navier-
Stokes equations are solved using an unstructured grid formulation. A
series of simulations, alternating between Model 1 and Model 2, are
done in which the results from Model 1 are used to specify the interface
boundary conditions for Model 2, and vice versa. Model 1 has a spe-
cified uniform inlet velocity on the right, a fully developed flow
boundary condition at the outlet on the left side and symmetry planes at
the bottom and the top except for the curved part ABC representing the
drop over which spatially-varying shear stress, obtained from Model 2,
is specified. Model 2 consists of one half of the cross-sectional plane of
the axi-symmetric drop. It has a symmetry plane as a boundary con-
dition along the bottom boundary and a specified velocity, obtained
from Model 1, as the boundary condition along the curved boundary. In
both domains, single phase Newtonian fluid flow prevails. The two
fluids have different densities and viscosities which are assumed to be
constant throughout each domain. The values of these variables have
been used to arrive at target viscosity ratios and Reynolds numbers.

The computations have been done using the CFD simulation tool
ANSYS FLUENT. A spherical, non-deformable drop of 1mm was con-
sidered for simulation and both continuous and dispersed phases were
assumed to be incompressible. Taking advantage of the rotational
symmetry of both flows, steady, two-dimensional, axisymmetric simu-
lations were performed to resolve the flow field in the two domains. To
start with, Model 2 was considered with a moving wall boundary
condition for the interface (shown as ABC in Fig. 1) and an initial
translational velocity was assumed (estimated from the analytical
model of Hadamard and Rybczynski [11]) for iteration 1 of Model 2.
The shear obtained at the interface for this calculation of Model 2 was
used as boundary condition in the first iteration for Model 1. The rise
velocity of the drop was calculated for each Reynolds number using
Hadamard-Rybczynski expression and was used as inlet velocity for
Model 1. This was done to keep the drop stationary, with the con-
tinuous fluid flowing past it. The velocity at the wall from Model 1 was
fed back to Model 2 as a boundary condition for the interface. In sub-
sequent calculations of Model 1, the inlet velocity, which effectively
becomes the rise velocity of the drop, was varied so as to ensure that the
computed (from wall shear and surface pressure) remained constant
and equal to the net buoyancy force acting on one-half of the drop. This
successive set of calculations was continued till convergence.

At the end of the iterative calculation, one would have matched
shear stress and velocity boundary conditions across the surface ABC in
both Model 1 and Model 2 for specified fluid properties, drop size and
iteratively-determined inlet velocity of Model 1 which is also the rise

(a) 

(b) 

Fig. 1. Problem formulation of flow over and inside a rising drop: (a) compu-
tational model (Model 1) for external flow calculation, and (b) computational
model (Model 2) for the calculation of flow inside the drop.
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