European Journal of Combinatorics 75 (2019) 152-168

Contents lists available at ScienceDirect European Journal

of Combinatorics

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Characterising bounded expansion by N
neighbourhood complexity G

Felix Reidl !, Fernando Sanchez Villaamil ¢,
Konstantinos Stavropoulos b.2

2 Theoretical Computer Science, Department of Computer Science, RWTH Aachen University, Aachen,
Germany

b Jogic and Theory of Discrete Systems, Department of Computer Science, RWTH Aachen University,
Aachen, Germany

ARTICLE INFO ABSTRACT

Article history: We show that a graph class G has bounded expansion if and only if it
Received 25 January 2016 has bounded r-neighbourhood complexity, i.e., for any vertex set X of
Accepted 2 August 2018 any subgraph H of any G € g, the number of subsets of X which are

Available online 25 September 2018 exact r-neighbourhoods of vertices of H on X is linear in the size of

X.This is established by bounding the r-neighbourhood complexity
of a graph in terms of both its r-centred colouring number and its
weak r-colouring number, which provide known characterisations
to the property of bounded expansion.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Graph classes of bounded expansion (and their further generalisation, nowhere dense classes) have
been introduced by NeSetfil and Ossona de Mendez [24-26] as a general model of structurally sparse
graph classes. They include and generalise many other natural sparse graph classes, among them all
classes of bounded degree, classes of bounded genus, and classes defined by excluded (topological)
minors. Nowhere dense classes even include classes that locally exclude a minor, which in turn
generalises graphs with locally bounded treewidth.

The appeal of this notion and its applications stems from the fact that bounded expansion has
turned out to be a very robust property of graph classes with various seemingly unrelated charac-
terisations (see [19,26]). These include characterisations through the density of shallow minors [24],
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quasi-wideness [3], low treedepth colourings [24], and generalised colouring numbers [32]. The latter
two are particularly relevant towards algorithmic applications, as we will discuss in the sequel.
Furthermore, there is good evidence that real-world graphs (often dubbed ‘complex networks’) might
exhibit this notion of structural sparseness [6,28], whereas stricter notions (planar, bounded degree,
excluded (topological) minors, etc.) do not apply.

It seems unlikely that bounded expansion and nowhere dense classes admit global Robertson-
Seymour style decompositions as they are available for classes excluding a fixed minor [29], a topo-
logical minor [21], an immersion [31], or an odd minor [5]. However, NeSetfil and Ossona de Mendez
showed [25] that bounded expansion and nowhere dense classes admit a ‘local’ decomposition, a so-
called low r-treedepth colouring, in the following sense: there exists a function f : N — N (depending
on the graph class) such that for every integer r, every graph G from a bounded expansion (nowhere
dense) class can be coloured with f(r) (respectively f(r)n°") colours such that every union of p < r
colour classes induces a graph of treedepth at most p. We denote by x,(G) the minimal number
of colours needed for an r-treedepth colouring of G. These types of colourings generalise the star-
colouring number ([26], Section 7.1) introduced by Fertin, Raspaud, and Reed [12]. In that context,
low r-treedepth colourings are usually called r-centred colourings® (the precise definition of which
we defer to Section 2).

This ‘decomposition by colouring’ has direct algorithmic implications. For example, counting how
often an h-vertex graph appears in a host graph G as a subgraph, induced subgraph or homomorphism
is possible in linear time [25] through the application of low r-centred (r-treedepth) colourings. A
more precise bound of running time O(|c(G)|**6"h?-|G|) for all three problems was shown by Demaine
etal. [6] if an appropriate low treedepth colouring c is provided as input. Low r-centred (r-treedepth)
colourings can be further used to check whether an existential first-order sentence is true [26] or to
approximate the problems - DELETION and INDUCED-.F- DELETION to within a factor that only depends
on the expansion of the class G the graph G belongs to and on the forbidden set 7 [28].

Another characterisation of bounded expansion is obtained via the weak r-colouring numbers,
denoted by wcol,(G). The name ‘colouring number’ reflects the fact that the weak 1-colouring number
is sometimes also called the colouring number of the graph, which is one more than the degeneracy
of the graph. Roughly, the weak colouring number describes how well the vertices of a graph can be
linearly ordered such that for any vertex v, the number of vertices that can reach v via short paths
that use higher-order vertices is bounded. We postpone the precise definition of weak r-colouring
numbers to Section 2, but let us emphasise their utility: Grohe, Kreutzer, and Siebertz [20] used weak
r-colouring numbers to prove the milestone result that first-order formulas can be decided in almost
linear time for nowhere-dense classes (improving upon a result by Dvorak, Kral, and Thomas for
bounded expansion classes [11] and the preceding work for smaller sparse classes [4,13,17,30]).

Our work here centres on a new characterisation, motivated by recent progress in the area of
kernelisation. This field, a subset of parametrised complexity theory, formalises polynomial-time pre-
processing of computationally hard problems. For an introduction to kernelisation we refer the reader
to the seminal work by Downey and Fellows [8]. Gajarsky et al. [ 18] extended the meta-kernelisation
framework initiated by Bodlaender et al. [2] for bounded-genus graphs to nowhere-dense classes
(notable intermediate results where previously obtained for excluded-minor classes [ 14] and classes
excluding a topological minor [23]). In a largely independent line of research, Drange et al. [9] recently
provided a kernel for DOMINATING SET on nowhere-dense classes. Previous results showed kernels
for planar graphs [1], bounded-genus graphs [2], apex-minor-free graphs [14], graphs excluding a
minor [15] and graphs excluding a topological minor [16].

A feature exploited heavily in the above kernelisation results for bounded expansion classes is
that for any graph G from such a class, every subset X C G has the property that the number of ways
vertices of G connect to X is linear in the size of X. Formally, we have that

HN() N X}evgl < ¢ - [X]

3 Depending on the way r-treedepth colourings are defined, r-centred colourings might appear in the literature as r — 1-
treedepth colourings, as for example in [26]. For convenience, here we define them in a way so that the gap in the depth r is
alleviated.
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