Differential Geometry and its Applications ••• (••••) •••-•••

Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Geodesic orbit spheres and constant curvature in Finsler geometry $^{\diamondsuit}$

Ming Xu

School of Mathematical Sciences, Capital Normal University, Beijing 100048, PR China

ARTICLE INFO

Article history: Received 12 May 2018 Available online xxxx Communicated by Jan Slovak

MSC: 22E46 53C22 53C60

Keywords:
Geodesic orbit metric
Homogeneous Finsler sphere
Constant flag curvature
Navigation

ABSTRACT

In this paper, we generalize the classification of geodesic orbit spheres from Riemannian geometry to Finsler geometry. Then we further prove if a geodesic orbit Finsler sphere has constant flag curvature, it must be Randers. It provides an alternative proof for the classification of invariant Finsler metrics with $K \equiv 1$ on homogeneous spheres other than Sp(n)/Sp(n-1).

 $\ \, \odot$ 2018 Elsevier B.V. All rights reserved.

1. Introduction

A Riemannian homogeneous manifold is called a *geodesic orbit space*, if any geodesic is the orbit of a one-parameter subgroup of isometries. This notion was introduced by O. Kowalski and L. Vanhecke in 1991 [24], as a generalization of naturally reductive homogeneity. Since then, there have been many research works on this subject. See [1][2][3][8][14][17][18] for example.

Meanwhile, geodesic orbit metrics have also been studied in Finsler geometry. In [33], the notion of geodesic orbit Finsler space was defined, and in [29], the interaction between geodesic orbit property and negative curvature property was explored.

The first purpose of the paper is to generalize Yu.G. Nikonorov's classification of geodesic orbit metrics on spheres [25] to Finsler geometry, and prove the following theorem.

https://doi.org/10.1016/j.difgeo.2018.07.002

0926-2245/© 2018 Elsevier B.V. All rights reserved.

Supported by NSFC (no. 11771331) and Beijing Natural Science Foundation (no. 1182006). E-mail address: mgmgmgxu@163.com.

9

Theorem 1.1. A homogeneous Finsler metric F on a sphere $M = S^n$ with n > 1 is a geodesic orbit metric iff the connected isometry group $I_o(M, F)$ is not isomorphic to Sp(k) for any $k \ge 1$.

By this theorem, we can easily list all the geodesics orbit metrics on spheres:

- (1) Riemannian metrics of constant curvature.
- (2) All homogeneous Finsler metrics on $S^{4n-1} = Sp(n)Sp(1)/Sp(n-1)Sp(1)$ with n > 1 and $S^{15} = Spin(9)/Spin(7)$. They are all of (α_1, α_2) -type, in which some special ones are Riemannian.
- (3) All homogeneous Finsler metrics on SU(n)/SU(n-1) with n > 2 and U(n)/U(n-1) with n > 1. They are all of (α, β) -type, in which some special ones are Riemannian.
- (4) All homogeneous Finsler metrics on Sp(n)U(1)/Sp(n-1)U(1). They are all of $(\alpha_1, \alpha_2, \beta)$ -type, in which some special ones are of (α, β) -type, (α_1, α_2) -type, or Riemannian.

See Section 2 for the notions of these metrics. When the metrics are Riemannian, the above list re-verifies Table 1 in [25]. For each case of (2)–(4), the space of geodesic orbit metrics has an infinite dimension. In an independent work [34], S. Zhang and S. Deng classified geodesic orbit Randers spheres with a more algebraic method, and described their geodesic vectors.

The second purpose of this paper is to apply Theorem 1.1 to homogeneous Finsler spheres of constant flag curvature $K \equiv 1$, and explore the interaction between geodesic orbit property and constant positive curvature property. We will prove the following theorem.

Theorem 1.2. A homogeneous Finsler sphere $(M, F) = (S^n, F)$ with n > 1 and $K \equiv 1$ is a geodesic orbit space iff it is Randers.

All Randers spheres $(M, F) = (S^n, F)$ with n > 1 and $K \equiv 1$ are classified by D. Bao, Z. Shen and C. Robles [9], i.e. the metric F must be defined by the navigation datum (h, W), in which h is the Riemannian metric for the unit sphere, and W is a Killing vector field with h(W, W) < 1 everywhere. The only new ingredient is that F is homogeneous iff W has a constant h-length. So we have the following corollary of Theorem 1.1 and Theorem 1.2,

Corollary 1.3. Any invariant Finsler metric F on a homogeneous sphere M with dim M > 1, $K \equiv 1$ and $I_o(M, F) \neq Sp(k)$ for all $k \in \mathbb{N}$, i.e. $M \neq Sp(n)/Sp(n-1)$ for all n > 1 or $Sp(1)/Sp(0) = SU(2)/\{e\}$ in the list (4.1) of homogeneous spheres, then F is a Randers metric defined by the navigation datum (h, W) in which h is the Riemannian metric for the unit sphere and W is a Killing vector field of constant length on (M, h).

Corollary 1.3 has classified all the invariant Finsler metrics with constant flag curvature on a homogeneous sphere, except for the most difficult case M = Sp(n)/Sp(n-1). It implies a negative answer to the question if a homogeneous Finsler metric of constant flag curvature can be "exotic". Global homogeneity for the metric is a critical condition, because in the non-homogeneous situation, we know the examples discovered by R.L. Bryant [4][5][6], and there may exist many more.

The above theorems and corollary can also be applied to study a homogeneous Finsler sphere (M, F) with $K \equiv 1$ and finite orbits of prime closed geodesics [28]. By Theorem 1.2 in this paper and that in [28], we may find totally geodesic sub-manifolds of M which are Randers spheres.

By private communication, the author noticed that L. Huang had discovered Corollary 1.3 in 2015, and found a computational proof based on his homogeneous flag curvature formula [19][20]. The method in this paper is more geometrical, and has not used any calculation concerning L. Huang formula. A Killing navigation process has been applied to reduce our discussion to the case that (M, F) is a geodesic orbit

Download English Version:

https://daneshyari.com/en/article/11033138

Download Persian Version:

https://daneshyari.com/article/11033138

<u>Daneshyari.com</u>