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ARTICLE INFO ABSTRACT

Handled by A.E. Punt. We evaluate the performance of generalized linear (GLM) and generalized additive (GAM) models for deriving
population indices from fishery independent survey data. Six model types (3 GLMs and 3 GAMs) were for-
mulated that differed in how spatial covariates were represented, with each using one of three alternative ways
to include temporal covariates. The models were applied to summer and fall survey data on 127 species from
fisheries-independent bottom-trawl surveys conducted by the Southeast Monitoring and Assessment Program
(SEAMAP) in the northwest Gulf of Mexico. Three response variables were analyzed: occurrence, density, and
abundance. The best model (from the alternative temporal representations) were identified for each response
variable for each of the six model types and their performance analyzed in more detail. Model performance was
based on residual autocorrelation (Moran’s I), prediction error (AIC weights), and predication variance (based on
simulated sampling). We examined for patterns in these metrics based on the magnitude of the response vari-
ables (i.e., by quartiles). Results suggest that sample size (indexed here by response value quartiles) could be
useful for a priori consideration when choosing among GLM and GAM models. GAM models that use geoposition
with smoothing as the spatial covariate performed comparable to some of the other models at low abundances
and densities (lower quartiles), and significantly outperformed all of the other models at higher densities and
abundances (quartiles 3 and 4). We discuss how our results provide guidance on selecting GLM and GAM models
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for deriving population indices from survey data.

1. Introduction

A major challenge for species abundance modeling is to account for
the high complexity inherent in the survey data in terms of spatial and
temporal variation (Cao et al., 2017; Orio et al., 2017; Thorson and
Barnett, 2017). Deriving indices of abundance that reflect the spatial
distribution of a species and its dynamics over time is fundamental to
the study of population and community ecology and plays a critical role
in management and conservation (Beale and Lennon, 2012; Berger
et al., 2017). For example, abundance indices are used in fisheries stock
assessment and management as the basis for documenting fish popu-
lation trends (Maunder and Punt, 2004), for the fitting of population
dynamics models (Campbell, 2014), and for other management-related
analysis, such as indices to tune multi-species and food web models
(Storch et al., 2017) and management strategy evaluation (Ono et al.,
2017).

The selection of the response variable to represent the population
index and how the statistical model applied to the survey data to
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estimate the index is formulated can strongly influence the resulting
inferences about the temporal and spatial dynamics of the population
(Bucas et al., 2013). Generalized linear models (GLMs; Nelder and
Wedderburn, 1972) and generalized additive models (GAMs; Hastie and
Tibshirani, 1986) are two statistical approaches commonly applied to
survey and monitoring data to generate population indices. GLMs that
stratify by depth and by longshore gradients are very commonly used as
part of marine fisheries stock assessment (Hart, 2012; Hoyle et al.,
2014b; SEDAR31, 2013). A typical example is the use of GLMs with a
polynomial representation of depth effects, in combination with stra-
tified regional zones, to describe the population trends of skates and
sharks in the North Sea (Sguotti et al., 2016).

While GLMs that fit spatially-stratified factor models are commonly
reported (Brodziak and Walsh, 2013; Campbell, 2015; Lynch et al.,
2012; Tascheri et al., 2010), there has also been analyses (albeit diffi-
cult to generalize) that demonstrate the efficacy of using GAMs (Berg
et al,, 2014; Bigelow et al., 1999; Minami et al., 2007; Walsh and
Kleiber, 2001). GAMs have been shown to fit inherently nonlinear
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relationships with lower prediction error than GLMs (Austin et al.,
2006; Li et al., 2011; Moisen and Frescino, 2002; Murase et al., 2009).
GAMs often also have less residual autocorrelation than GLMs, parti-
cularly when the model itself includes covariates designed to quantify
spatial correlation effects; in such cases, GAMs can have greater pre-
dictive power (Polansky et al., 2018; Segurado and Araujo, 2004;
Segurado et al., 2006). In particular, GAMs specifying 2-dimensional
(2D) isotropic functions of geoposition, rather than product interactions
of latitude and longitude may be especially useful for dealing with
autocorrelation (Augustin et al., 2013; Wood and Augustin, 2002). For
fisheries-dependent data, bias can be introduced to abundance esti-
mates when spatial aggregation is too course such that sampling is no
longer random (Campbell, 2004; Carruthers et al., 2010), and fine-scale
resolution may be much better able to capture underlying dynamics
(Carruthers et al., 2011). For fisheries-independent data, however, it
remains unclear to what extent resolution or specifying similar cov-
ariates in GLMs affects how well autocorrelation is represented.

Survey data generally have a high prevalence of zeroes and skewed
distributions. Such data can be problematic for fitting typical dis-
tributions (Shono, 2008; Zuur et al., 2012). Zero-inflated Poisson
(Lambert, 1992) and negative binomial (Welsh et al., 1996) are
common in ecological research; they are used to model population
dynamics (Lyashevska et al., 2016; Zipkin et al., 2017) and species
distributions for common and rare species (Cunningham and
Lindenmayer, 2005; Welsh et al., 1996). In fisheries, zero-inflated ne-
gative binomials have been applied to bycatch estimation (Kuhnert
et al.,, 2011; Minami et al., 2007). Alternatively, delta-distributions,
though less common, are used in spatial models for populations and for
community ecology (Arcuti et al., 2014; Lynch et al., 2014). Delta-
GLMs and delta-GAMs in particular are two-part models that have been
applied to fisheries indices of abundance. Delta-GLMs (Stefansson,
1996), especially delta-lognormal distributions (Walter and Ortiz,
2012), are the most commonly used models in fisheries stock assess-
ment abundance standardization (Hoyle et al., 2014a), though various
forms of delta-GAMs (Swartzman et al., 1992) have also been proposed
(Arcuti et al., 2014; Bacheler and Ballenger, 2018; Li et al., 2011; Orio
et al., 2017). Systematic comparisons of GLMs and GAMs when used to
derive population indices from survey data are rare (though see
Venables and Dichmont, 2004; Yu et al., 2013).

The purpose of this analysis is to explore whether criteria a priori to
model selection can be applied to better formulate statistical models
used to generate population indices. Few direct comparisons among
alternative models are available to allow for general guidance on how
one should select which approach (GLM or GAM) to use. We evaluate
GLMs and GAMs based their application to the same survey data on
their: 1) residual autocorrelation, 2) prediction error, and 3) prediction
variance. Both GLMs and GAMs have been extensively described
(Hastie and Tibshirani, 1990; McCullagh and Nelder, 1989; Wood,
2017); our focus is on the performance of GLMs and GAMs when both
are applied in a consistent manner to the same widely used fisheries
survey dataset and whether the results lead to general guidelines in how
the two approaches should be used in different situations. Model
choices, such GLM or GAM, are often made a priori to analysis; yet,
explicit criteria for a priori selection are often lacking and clear evi-
dence which modeling approach should be used is equivocal and often
undocumented. Regardless of choice, abundance models should reduce
spatial correlation, account for important temporal patterns, and reduce
survey bias.

Consistent estimators of performance are needed to quantify dif-
ferences among modeling approaches and among different formulations
(e.g., covariates) within an approach. Difficulties in comparing models
often arise due to lack of sufficient quantity and quality of data to allow
for rigorous comparisons and because the subsets of the many possible
evaluation criteria vary among studies (Rocchini et al., 2011). Residual
autocorrelation, prediction error, and prediction variance, as used here,
provided three contrasting criteria of model performance. Model
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residuals are compared between samples and weighted by proximity;
spatially significant clusters compared to a null sampling distribution
denote autocorrelation. Relative prediction error is estimated using
Information-Theoretic methods, where increasing prediction error de-
notes decreasing information contained in model likelihood functions
(Arndt, 2012). Models should fit data well, but still be flexible enough
to make reliable predictions from new data; therefore, we compare
annual abundance indices from simulated replicate surveys to field
survey data to compare prediction variation.

We examine the performance of GLMs and GAMs for numerous
species and three commonly used response variables (occurrence,
abundance, density). Our evaluation of model performance is based on
a common set of criteria applied across modeling approaches and across
alternative models with each approach. We then attempt to relate
performance to the response sizes (e.g., low versus high average
abundance indices) to derive information to guide decisions in model
selection. Our test dataset was the summer and fall survey data on 127
species from fisheries-independent bottom-trawl surveys conducted by
the Southeast Monitoring and Assessment Program (SEAMAP) in the
northwest Gulf of Mexico. The large number of species ensures that
models are compared across a wide range of abundances and densities
for species that exhibit a diverse suite of spatial and seasonal patterns.
Only spatio-temporal covariates (e.g., depth, latitude) are considered,
as these are commonly used to derive population indices. Further
analyses could investigate environmental variables (e.g., temperature)
as spatial and temporal covariates. For each species, trawl-collected
data were fit to binomial, lognormal, and negative binomial response
distributions to generate response variables of occurrence, density, and
abundance. We then fit a progression of GLM and GAM models with
spatial covariates (depth, latitude-longitude, location), and for each
spatial version, we select the best among three different ways to re-
present time (year, season, day). The performance of the best models
for each species is then quantified using their autocorrelation, predic-
tion error, and prediction variance. These results are accumulated over
species to allow for comparisons of overall performance among GLMs
and GAMs for the three response variables. We conclude with how our
results lead to several recommendations on model selection for the
surveys that resemble our SEAMAP test dataset.

2. Methods

We outline the step-by-step flow of methods for model fitting
(Fig. 2) to response variables (Fig. 3), and for model variance estima-
tion (Fig. 4). Fig. 2 outlines the steps for fitting and comparing the 3
GLMs and 3 GAMs at differing latitudinal and longitudinal spatial re-
solutions using observed survey covariate values. Fig. 4 outlines the
steps used to simulate new covariate values for input into the 6 models
to generate new model estimates that are then used to quantify pre-
diction variance.

2.1. SEAMAP data

We used the bottom-trawl surveys for the Gulf of Mexico as col-
lected by the Southeast Monitoring and Assessment Program (SEAMAP;
http://www.gsmfc.org). SEAMAP is a long-term scientific survey con-
ducted in the summer and fall (Fig. 1). Surveys were based on a stra-
tified random design, where transects perpendicular to depth gradients
were randomly selected within NOAA statistical zones (Fig. 1A). Trawls
were then taken at approximately 5fm isobath intervals on each
transect.

We used a subset of the SEAMAP data in this analysis that we
screened for sampling consistency (A in Fig. 2). We only included trawls
that met the following criteria: summer and fall surveys during 1985 to
2013; depth of trawls was less 110 fm; statistical zones 10 to 21; only
samples collected with a 12.8 m otter trawl fitted with a 1.63 cm mesh;
trawl distances limited to 0.5 to 10 km; and where meta-data comments
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