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The probabilistic nature of synaptic transmission has remained

enigmatic. However, recent developments have started to shed

light on why the brain may rely on probabilistic synapses. Here,

we start out by reviewing experimental evidence on the

specificity and plasticity of synaptic response statistics. Next,

we overview different computational perspectives on the

function of plastic probabilistic synapses for constrained,

statistical and deep learning. We highlight that all of these views

require some form of optimisation of probabilistic synapses,

which has recently gained support from theoretical analysis of

long-term synaptic plasticity experiments. Finally, we contrast

these different computational views and propose avenues for

future research. Overall, we argue that the time is ripe for a

better understanding of the computational functions of

probabilistic synapses.
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Introduction
Animals have evolved in uncertain environments. For

example, they have adapted to distinguish nutrition

sources of different shapes, sizes, colours and tastes. Such

perceptual uncertainty should be encoded by the brain to

enable accurate decision making [1,2�,3]. This link

between perception and decision is presumably achieved

through communication between different brain areas,

which ultimately relies on synaptic transmission [4,5].

Synaptic transmission is inherently stochastic: a presyn-

aptic action potential may or may not trigger neurotrans-

mitter release that in turn binds to postsynaptic receptors

[6�]. For synaptic transmission to successfully trigger a

behavioural decision synaptic response statistics should

be tuned during learning [4,7,5]. However, it has

remained unclear exactly which aspects of probabilistic

synapses should be modified during learning.

There is wide evidence of plasticity occurring at the key

components that underlie synaptic transmission statistics.

For example, not only does plasticity change the proper-

ties and number of postsynaptic receptors, but also the

intricate presynaptic machinery responsible for stochastic

neurotransmitter release [8,7]. Because synaptic plasticity

is believed to underlie learning [4,5], this body of experi-

mental work suggests that the brain shapes probabilistic

synapses as animals adapt to the environment. This has

important theoretical implications [9�,10,11��,12��], but

most computational models of learning and synaptic

plasticity have considered only changes in the mean

synaptic weight (e.g. [13–15]). Below we review recent

experimental and theoretical developments on the plas-

ticity and computation roles of probabilistic synapses.

Specificity of synaptic transmission statistics
The probabilistic nature of synaptic transmission has

been described as a binomial process [16,6�,7], which is

parametrised by the (i) number of synaptic release sites N,
(ii) presynaptic release probability Prel and (iii) quantal

amplitude q — proportional to the number of postsynap-

tic receptors 7 (Figure 1a-i). Together these three param-

eters define the statistics of synaptic responses, with

mean given by NqPrel and variance by Nq2Prel(1 � Prel)

(Figure 1a-i).

The exact mean and variance of synaptic transmission

depends on where the synapse is located. In cortical

circuits the statistics (e.g. means and variances) of synap-

tic responses exhibit a high degree of variability that

7 This is a simplified view of the complicated release machinery. For example, the quantal amplitude q also depends on the amount of

neurotransmitter per (presynaptic) vesicle and on the sensitisation of postsynaptic receptors.
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depends on cell-type [17], connection-type [17–19], layer

[17,20], brain area [21], age [22], and even species [23].

For example, excitatory synapses from thalamic projec-

tions onto layer-4 granule cells are more reliable [24] than

synapses between layer-5 pyramidal cells [19]. Remark-

ably, connections from pyramidal cells onto lateral inhib-

itory cells can also be dramatically different: synapses

onto somatostatin-positive interneurons cells communi-

cate with a low basal release probability, whereas

synapses onto parvalbumin-positive interneurons are

stronger with higher release probability [18,19]

(Figure 1a-ii). Such high specificity of probabilistic syn-

apses suggests that they are modified during learning.

Plasticity of probabilistic synapses
Accumulating evidence suggests that synaptic plasticity

underlies learning in the brain [4,5]. Synaptic plasticity

not only modifies the mean synaptic response, but also its
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Specificity and plasticity of probabilistic synapses. (a) Throughout the brain virtually every synapse is probabilistic. (i) When a presynaptic spike

(blue vertical line on the left) occurs a presynaptic vesicle (blue circles) may release neurotransmitters (red dots) that bind to postsynaptic

receptors (red) which elicits a postsynaptic potential (PSP; PSPs of different amplitudes are represented by the small vertical blue lines). The key

parameters that determine the statistics of probabilistic synaptic responses are the number of presynaptic release sites (N, groups of vesicles in

blue), release probability (Prel, blue arrows) and quantal amplitude which is proportional to the number of postsynaptic receptors, q, red). This

process is typically modelled as a binomial probability distribution (orange histogram, with N = 5, Prel = 0.5 and q = 1 for illustration), which in the

limit of large N can be approximated as a Gaussian distribution (black line) with mean=NqPrel and variance=Nq2Prel(1 � Prel). (ii) Simplified

representation of cortical circuits, with both excitatory (black) and inhibitory (purple) synapses and neuron types. Each synaptic connection is

stochastic (represented as a Gaussian distribution). Two different inhibitory cell-types are represented: somatostatin (SST, dashed green circle)

and parvalbumin (PV, black circle); here these two separate inhibitory cell-types are represented as overlapping circles for simplicity. Note that

different connections exhibit statistics of different means and variances (see main text for more details). (b) Long-term plasticity of probabilistic

synapses. (i) Different induction protocols have been shown to trigger changes in the probability of postsynaptic responses. Schematic on the left

represents presynaptic and postsynaptic spikes in a spike-timing-dependent plasticity protocol, which depending on the timing between

presynaptic and postsynaptic spikes (Dt) as well as the inter-spike interval (ISI) may lead to long-term potentiation (LTP) or depression (LTD). This

in turn changes not only the mean synaptic response, but also its variance. (ii) Modifications to probabilistic synapses during plasticity are known

to rely on specific retrograde (e.g. endocannabinoids (eCB) and nitric oxide (NO)) and anterograde signals (glutamate (Glu)). (iii) Behavioural

outcomes (e.g. reward) may rely on neuromodulation (e.g. Dopamine) to regulate plasticity at probabilistic synapses.
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