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Nowadays, microbial communities are frequently monitored

over long periods of time and the interactions between their

members are explored in vitro. This development has opened

the way to apply mathematical models to characterize

community structure and dynamics, to predict responses to

perturbations and to explore general dynamical properties such

as stability, alternative stable states and periodicity. Here, we

highlight the role of dynamical systems theory in the exploration

of microbial communities, with a special emphasis on the

generalized Lotka–Volterra (gLV) equations. In particular, we

discuss applications, assumptions and limitations of the gLV

model, mention modifications to address these limitations and

review stochastic extensions. The development of dynamical

models, together with the generation of time series data, can

improve the design and control of microbial communities.
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Introduction
Microbial communities are not static over time; abun-

dances of members fluctuate from one measured time point

to the next, sometimes drastically so. Longitudinal studies

of host-associated and environmental microbiota have

revealed several cases of complex dynamics, including

periodicities, chaos and alternative stable states [1,2��],
as reviewed in [3]. Moreover, thanks to advances in

sequencing techniques, the number, length, and resolution

of microbial community time series are all increasing rap-

idly; time series may cover a year or more, with monthly,

weekly or even daily sampling intervals [1,4,5]. However,

while we are gaining an ever more detailed picture of the

composition and dynamics of many microbial communi-

ties, we still understand little of the rules that govern how

these communities change over time.

Dynamical systems theory is a well-developed branch of

mathematics that describes the change of complex sys-

tems such as microbial communities over time, and which

is now increasingly applied to sequencing data [6–8]. In

brief, the time development of a dynamical system, here

the species composition of the community, can be

described by a set of ordinary differential equations

(ODEs) that encode the rules according to which the

system changes. In some cases, prior biological knowl-

edge of the system is sufficient to formulate these rules,

while in others they can be derived from time series data.

Dynamical systems theory highlights the conditions for

the emergence of complex behavior and provides rigorous

definitions of stability (see Box 1). The development and

analyses of dynamical models thus allow microbial ecol-

ogy to go beyond simple descriptions of community

composition and statistical correlations, towards a better

understanding of community dynamics.

Ordination plots visualize movement through
community space
Microbial community time series are frequently visual-

ized in ordination plots, where each sample is represented

by a point and consecutive samples are connected by

arrows (e.g. [9–11]). Ordination methods, such as

Principal Coordinates Analysis (PCoA), display sample

similarity computed from the high-dimensional species

composition in a lower, typically two-dimensional space.

Since microbial community time series often consist of

rarefied counts or relative abundances and are therefore

compositional, the sample similarity needs to be assessed

by methods that have been designed for compositional

data, such as the Aitchison distance [12]. Bray-Curtis

dissimilarity is also a suitable option, yielding similar

results for absolute and relative abundances [13]. Alter-

natively, the data can be transformed with a log ratio (e.g.

the centered log ratio as in [14]).

In dynamical systems theory, the phase space represents

all possible system states. A PCoA plot can be interpreted

as a representation of the phase space. The points
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connected by arrows correspond to the trajectory of the

system through the phase space (or community space, for

simplicity). The community’s movement through com-

munity space can be analyzed to test for instance whether

the community moves randomly or tends towards a cer-

tain direction, or whether community composition

changes more strongly during perturbation periods,

implying larger jumps through community space. Figure 1

illustrates trajectories for ocean and gut microbial com-

munities, which provide examples of periodic behavior

(Figure 1a) as well as the tendency to remain in the same

region of the community space, suggesting the presence

of a stable state (Figure 1b). While the gut community in

Figure 1b returns to its stable state after a perturbation,

thereby demonstrating resilience, a gut community from

another person appears to switch to a second state upon

perturbation (Figure 1c). While the phase space plot

visualizes attractors such as stable states, alternative plots

such as recurrence plots and periodograms serve to

explore other aspects of the behavior of dynamical sys-

tems, such as periodicity.

Recently, the Anna Karenina principle (AKP) of dysbiotic

communities has been put forward [15,16�], which states

that dysbiotic communities tend to exhibit greater inter-

subject variability than the ‘reference’ community in

healthy hosts. The observation that perturbation periods

contain larger jumps than are present before the pertur-

bation (Figure 1d) suggests a dynamical formulation of

the AKP, where perturbed communities tend to vary

more strongly over time than healthy communities.

Although experimental evidence supports this dynamic

version of the AKP [17�], it remains to be tested

systematically.

What can we learn from community models?
Mathematical approaches provide the means for system-

atic quantitative characterization of observed patterns and

their underlying mechanisms, and have a long-standing

history in ecology (e.g. [18,19]). While a number of

models have been proposed in microbial community

ecology (reviewed e.g. in [20]), we will discuss in partic-

ular the generalized Lotka–Volterra (gLV) model, since it

has become one of the most popular microbial community

models to date (e.g. [6,21]).

The gLV model is a classical ordinary differential equa-

tions (ODEs) model that characterizes the dynamics of a

multi-species system. It describes the change over time of

a population of N species as a function of their intrinsic

growth rates and the interactions between species (see

the supplement). Interactions can be unidirectional (spe-

cies i affects species j, but not the other way round; e.g.

commensalism) or reciprocal (species i affects species j
and vice versa; e.g. competition and parasitism).

Together, these interactions encode the community net-

work. Thus, the gLV model can capture a number of

commonly encountered network structures, including

food chains, modularity, scale-freeness and small-world

networks (e.g. in [22,23]).

The utility of the gLV model for studying microbial com-

munities is twofold: it offers a convenient tool to interpret

existing empirical data, and provides a framework to make

broader predictions about the factors that govern microbial

communities’ stability and dynamics. An increasing num-

ber of methods have been developed with which to fit gLV

models to large-scale longitudinal (and in certain cases,

cross-sectional) data [7,8,24,25]. In these studies, observed

data are used to assign values to the intrinsic growth rates

and interspecies interactions associated with each member

of a microbial community. Thus, one can determine not

only how each species’ abundance changes over time, but

how this change is influenced by each of the other members

of the community. Through learning these parameters,

researchers have been able to identify members of micro-

bial communities that play important roles both for broad

scale community properties (e.g. keystone species that

influence many other community members [7]) and for
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Box 1 What does ‘stability’ mean?

Many theoretical works in ecology focus on ‘stability’. However, the

definition of this property varies from author to author. It is therefore

important to distinguish them:

� Linear asymptotic stability: In the theory of non-linear dynamical

systems, stability is determined by the behaviour of the system in

response to a small, punctual perturbation in the variables (i.e. a

change in abundance of some species in the present context) (see

e.g. [31,65]). If, following the perturbation, the composition of a

microbial community returns to its initial (steady) state, this state

will be stable. In contrast, if the perturbation amplifies (meaning

that the system diverges from its initial state), this state is unstable.

In addition, stability is a local property: it does not imply anything

about the long-term behaviour of the system and may not be valid

for large perturbations.

� Persistence/permanence: These definitions of stability pertain to

the long-term behaviour of a community. Both imply that a com-

munity will always maintain the species it started with, regardless

of the size of the perturbation and even if it does not return to its

original state [66], however, permanence is the stricter definition

requiring that the boundary of the state space is a repeller:

meaning if ever any species density approaches too close to zero,

it will again begin to grow- and thus formally no species can ever

go extinct [67].

� Temporal stability and robustness: Stability of an ecological

system is sometimes assessed by the level of variability displayed

by the community over time [68]. This variability may be attributed

to stochasticity. A related definition refers to how much the com-

position of a system depends on small environmental changes,

which are typically taken into account in the model parameters. If

the community tends to remain constant over time or across

parameter changes, it will be considered more stable. On the

contrary, if the abundance of some species is sensitive to para-

meter changes, the system is considered less stable. This concept

of stability is a measure of robustness — or resistance — to noise

and to parameter values, and can be quantified by sensitivity

analyses (parameters) or stochastic simulations (noise).

� Structural stability: A system is more structurally stable than

another if its dynamical behaviour (e.g. the coexistence between

several species) is maintained over a larger range of parameter

values [69,70].
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