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a b s t r a c t

This paper proposes an estimation approach for count data models with endogenous
covariates. The maximum approximate composite marginal likelihood inference approach
is used to estimate model parameters. The modeling framework is applied to predict crash
frequency at urban intersections in Irving, Texas. The sample is drawn from the Texas
Department of Transportation (TxDOT) crash incident files for the year 2008. The results
highlight the importance of accommodating endogeneity effects in count models. In
addition, the results reveal the increased propensity for crashes at intersections with
flashing lights, intersections with crest approaches, and intersections that are on frontage
roads.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper develops an estimation approach for count data models with endogenous covariates, where the endogenous
covariates are based on a multinomial probit discrete outcome model. The proposed formulation model constitutes a
specific version of the generalized Roy model that is referred to as the treatment effects model (see Heckman and Vytlacil,
2005 and Bhat and Eluru, 2009). In the empirical context studied in the paper, the type of control at an intersection
constitutes the treatment. The type of control is represented in five categories: (1) no traffic control (including intersections
with no control and intersections with some minimal form of control such as turn marks and marked lanes), (2) yield sign
control on one more approaches with no other form of control, (3) stop sign control on one or more approaches, (4) flashing
light control (one or more approaches having a flashing red or yellow light), and (5) regular signal light control. The count
outcome in the empirical context is the number of crashes at urban intersections. In this case, the type of traffic control may
itself be determined by the frequency of crashes, as, in fact, is explicitly noted in the Manual on Uniform Traffic Control
Devices or MUTCD (FHWA, 2009). For instance, the total entering volume of traffic on the approach roadways to an intersection
may directly impact both the type of control as well as the frequency of crashes, creating an “endogeneity” of the type of traffic
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control in crash frequency analysis. But if the entering volume were an observed variable, then this type of “endogeneity” is easily
accommodated by including the entering volume as an explanatory variable, along with traffic control type, in the modeling of
crash frequency. More generally, if the determination of the control types at intersections were random conditional on observed
characteristics, a traditional count model for crash frequency would suffice. However, many unobserved factors may affect both
control type and crash frequency, rendering the random conditional (on observed characteristics) assumption untenable. For
instance, at intersections with an unobserved terrestrial/topographic feature that limits sight distance, flashing lights may be
installed instead of a stop sign. That same unobserved feature may be responsible for a lower or a higher frequency of crashes (one
can argue that motorists are more careful when they encounter some unobserved topographic feature, resulting in a lower
frequency of crashes; alternatively, it could also be that the unobserved feature results in a higher frequency of crashes). If one of
these two situations exists, but is ignored, it would generate an inconsistent, spurious, and biased effect of flashing lights on
intersection crash frequency. Of course, there are many other application contexts where our proposed model formulation should
be useful, including the type of insurance plan (“treatment”) and the number of doctor visits (outcome), residential location type
(“treatment”) and the number of cancer incidents (outcome), the intensity of lighting at a train station and the number of crimes
at the station, and one of many other contexts where count models are used to model the outcome decision. However, in the
development of the model formulation in this paper, as in the empirical analysis context of the paper, the focus will be on traffic
control type and the frequency of crashes at urban intersections.

Methodologically speaking, our parametric multinomial discrete-count model uses a general multinomial probit (MNP)
specification for the treatment and ties this MNP model with a count model. In particular, we use Castro et al., 2012 recasting of a
univariate count model as a restricted version of a univariate generalized ordered-response probit (GORP) system. In addition to
providing substantial flexibility to accommodate high or low probability masses for specific count outcomes, the latent variable-
based count specification of the GORP system provides a convenient mechanism to tie the count outcome with the MNP treatment
model. In this regard, our proposed model (which we will refer to as the Count model with endogenous multinomial probit
selection, or the CEMPS model) has some similarity with Bhat (1998) and Munkin and Trivedi's (2008) ordered probit model with
endogenous selection, but with four important differences. First, the outcome variables in the earlier models were ordinal variables,
while the outcome variable in our CEMPS model is a true count variable that can take on any non-negative integer value. Second,
the earlier models did not allow random response variations (or unobserved heterogeneity) in the sensitivity to exogenous factors
in both the selection (or treatment) component as well as the outcome component. On the other hand, it is now well established
that ignoring such response variations when present will lead to inconsistent and biased parameters estimates in both multinomial
discrete response models as well as count models (see Chamberlain, 1980, Bhat, 1998). For instance, variations in the effect of
entering volume on the type of control installed at an intersection and on crash frequency may result from the complex interactions
between unobserved intersection characteristics and motorist learning/adaptation behavior in response to different levels of traffic
volume. Accommodating such unobserved heterogeneity effects is not simply an esoteric econometric effort, but can have very real
implications for accurately assessing the overall effects of variables on the outcome of interest (for example, to design
countermeasures to reduce crash frequency in our empirical context; see Anastasopoulos and Mannering, 2009, Castro et al.,
2013, and Mannering and Bhat, 2014). Third, we allow unobserved heterogeneity in the treatment effects themselves rather than a
priori positing fixed treatment effects. For example, even after controlling for endogeneity effects, the “true” effect of control type on
crash frequency itself may vary across intersections due to such unobserved intersection geometric features as curb radii and
approach configuration. Fourth, unlike Bhat (1998), we use an MNP-based treatment model rather than a very restrictive
multinomial logit treatment model, and use a simple frequentist inference approach rather than Munkin and Trivedi's relatively
cumbersome Bayesian estimation approach. The frequentist approach is based on an analytic (as opposed to a simulation)
approximation of the multivariate normal cumulative distribution (MVNCD) function that appears in the full likelihood function of
the proposed model. Bhat (2011) discusses this analytic approach, which is based on earlier works by Solow (1960) and Joe (1996).
The approach involves only univariate and bivariate cumulative normal distribution function evaluations in the likelihood function.

In summary, and to our knowledge, this is the first formulation and application of a flexible count outcome model with a
multinomial probit selection model, which also accommodates unobserved heterogeneity effects.

2. Model formulation

2.1. The selection (treatment) MNP model

In the usual random discrete response model formulation, write the unobserved continuous random latent variable
influencing the probability that intersection q is controlled by traffic control type i as follows:

Uqi ¼ β′qxqiþξqi ð1Þ
where xqi is a ðD� 1Þ-column vector of exogenous attributes (including a dummy variable for each control type alternative except a
base control type), βq is an individual-specific ðD� 1Þ-column vector of corresponding coefficients that varies across intersections
based on unobserved intersection attributes, and ξqi captures the idiosyncratic (unobserved) intersection characteristics that impact
the latent propensity of control type i being installed at intersection q (in the rest of this paper, wewill refer to Uqi as the propensity
of control type i being installed at intersection q). We assume that the error terms ξqi are multivariate normally distributed across
control types i for a given intersection q: ξq ¼ ðξq1; ξq2;…; ξqIÞ′�MVNIð0I ;ΛÞ, where MVNIð0I ;ΛÞ indicates an I-variate normal
distributionwith a mean vector of zeros denoted by 0I and a covariance matrix Λ . Such a specification captures the possibility that,
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