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Abstract

The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve

hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W–SPSA)

algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation

structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g.

readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows).

In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However,

W–SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far

an open problem, and only heuristic approaches to obtain it have been considered.

This paper presents W–SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W–SPSA,

and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that

marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of

our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment

model and a microscopic traffic simulator, respectively.
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1. Introduction

Due to the well known complexity of transportation systems in our cities, together with their fundamental role in

terms of environment, quality of life and economic growth, research in analysis and prediction of traffic phenomena

is gaining a growing importance. This has been even more notable with the recent sensing and data processing

innovations of varying nature (e.g. telecom, smart cards), globally referred to as ”big data”. We do have more data,

more computing power and higher recognition of the importance of understanding traffic in our cities.
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However, the problem is still very complex as it quickly reaches high dimensionality with large networks, multiple

measurements, several traffic control systems, and high and heterogeneous demand patterns. An approach to deal

with this complexity is by using simulation models. In this case, the origin–destination (OD) flows (the demand) are

assigned to the system by moving vehicles on the network (the supply). This approach can capture emergent behaviour

(e.g. congestion) that is often hard to predict analytically. To run properly, simulation models expect, therefore, both

supply and demand inputs and parameters. The size and type of such parameter set depends on the simulation scenario

and on the simulator itself. One may need to define, for example, OD matrices and route choice model parameters for

the demand and speed/density relationship functions or driving behaviour model parameters for the supply.

The essential challenge then becomes the calibration of all the supply and demand parameters in order to reflect

the real phenomena. Different requirements are expected for dynamic traffic assignment models (DTA) (e.g. Ben-

Akiva et al., 2010a) and for microscopic traffic simulation (e.g. Yang and Koutsopoulos, 1996). For example, DTA

models usually utilise mesoscopic demand and supply simulator components, that employ a mix of microscopic and

macroscopic models to capture the decision of the travellers and the movement of vehicles throughout the network.

They consider the (often thousands or tens of thousands) OD flows in the network as inputs that need to be calibrated.

Similarly, in the supply side, segment output capacities are among the parameters that need to be calibrated, and these

are easily in the order of thousands. Microscopic traffic simulator models also require OD flows as inputs, but on the

supply side they require a much smaller number of parameters to be calibrated (used in the individual models, such as

car–following, merging, lane–changing) (Toledo et al., 2007).

Overall, a traffic model may contain hundreds of thousands of parameters, and, in a complex network with a large

population, the simulation itself is not computationally negligible. Moreover, due to the (generally unknown) nature

of the search space, this becomes a complex optimization problem. Given the available data (e.g. traffic volumes,

densities and speeds from conventional counters, but also travel times or route–choice fractions), the optimization

problem consists of estimating the parameters that minimize the difference between sensed values and simulated

values. Of course, the computational costs forbid brute force solutions and the lack of a precise analytical model

frustrates the use of deterministic methods. We need a methodology that is parsimonious with the simulation runs, yet

capable of making an efficient search in a stochastic fashion.

The Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1998) was designed to address

these issues. Briefly, at each iteration, it generates a pair of new vectors to inspect (i.e. run the simulation for), where

each individual vector element, or parameter, is determined by a perturbation with respect to the original value. The

particularity is that all parameters are perturbed simultaneously in a stochastic, pair-wise symmetric fashion: the new

pair of values of parameter i will be ai ± pi, being ai the original value of parameter i and pi the perturbation. The

gradient is then calculated taking into account the respective simulation results.

The characteristics of SPSA allow for another functionality, introduced by Balakrishna (2006), that is to simultane-

ous calibrate all supply and demand parameters together, as opposed to have them calibrated separately (and possibly

iteratively). Balakrishna (2006) have shown that simultaneous approaches outperform the traditional iterative frame-

work when applied to the calibration of DTA models. SPSA and its variations have since been applied extensively in

the field of traffic simulation model calibration. Balakrishna et al. (2007) apply SPSA for the simultaneous calibration

of the demand and supply parameters and inputs to the microscopic traffic simulation model MITSIMLab (Yang and

Koutsopoulos, 1996) using the network of Lower Westchester County, NY, to demonstrate the feasibility, application,

and benefits of the proposed methodology. Ma et al. (2007) compare the performance of SPSA against a genetic

algorithm (GA) and a trial-and-error iterative adjustment algorithm (IA) for the calibration of a microscopic simula-

tion model in a northern California network and conclude that SPSA can achieve the same level of accuracy as the

other two with a significantly shorter running time. Vaze et al. (2009) present a framework for the joint calibration of

demand and supply model parameters of DTA models using multiple sources of traffic information. The calibration

problem has been formulated as a stochastic optimization framework and SPSA was found to outperform compet-

ing algorithms, based on results using both counts and travel time measurements obtained from automated vehicle

identification systems on a synthetic network and the network of Lower Westchester County, NY.

Huang et al. (2010) applied SPSA for the calibration of dynamic emission models. This research uses a microscopic

traffic simulator and the aggregate estimation ARTEMIS as a standard reference. Lee and Ozbay (2008) propose a

Bayesian calibration methodology and applied a modified SPSA algorithm to solve the calibration problem of a cell

transmission based macroscopic traffic model. In this formulation, the probability distributions of model parame-
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