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Abstract

This paper proposes a theory for estimating the Macroscopic Fundamental Diagram (MFD) on inhomogeneous corridors and
networks using probabilistic methods. By exploiting a symmetry property of the stochastic MFD, whereby it exhibits identical
probability distributions in free-flow and congestion, it is found that the network MFD depends mainly on two dimensionless
parameters: the mean block length to green ratio and the mean red to green ratio. The theory is validated with an exact traffic
simulation and with the empirical data from the city of Yokohama. It is also shown that the effect of buses can be approximated
with the proposed theory by accounting for their effect in the red to green ratio parameter.
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1. Introduction

It has been shown experimentally by Geroliminis and Daganzo (2008) that the average flow on an urban network
can be accurately predicted knowing the average density in the network. This urban-scale Macroscopic Fundamental
Diagram (MFD) appears as an invaluable tool to overcome the difficulties of traditional planning models. Although
it is still under debate whether it depends on trip origins and destinations and route choice, there is no question that
network topology and control parameters such as block length, existence of turn-only lanes, and traffic light settings
play a key role.

Existing methods to estimate the MFD analytically for simple homogeneous arterial corridors can be categorized
into three types: (i) empirical (Geroliminis and Daganzo, 2007, 2008; Wu et al., 2011; Saberi and Mahmassani,
2012; Geroliminis and Sun, 2011; Geroliminis and Ji, 2011; Cassidy et al., 2011; Knoop, 2012; Gayah and Daganzo,
2011; Buisson and Ladier, 2009; Daganzo et al., 2011), (ii) analytical (Daganzo and Geroliminis, 2008; Leclercq
et al., 2014), and (iii) simulation (Ji et al., 2010; Mazlomian et al., 2010; Geroliminis and Boyaci, 2013; Haddad and
Geroliminis, 2012; Haddad et al., 2013; Knoop and Hoogendoorn, 2011; Knoop et al., 2011). Existing analytical
results are based on the method of cuts for homogeneous corridors, i.e. with equal block size, signal settings and
constant offset, and therefore, one can focus on the cuts from a single intersection to compute the MFD for the
whole corridor. Despite this apparent simplicity, this approach quickly becomes intractable, more so if buses are

* Corresponding author. Tel. : +1 (404) 894-2360; Fax : +1 (404) 894-2278
E-mail address: jorge.laval @ce.gatech.edu (Jorge A. Laval).

2352-1465 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Selection and peer-review under responsibility of Kobe University

doi:10.1016/j.trpro.2015.06.032



616

Jorge A. Laval and Felipe Castrillon / Transportation Research Procedia 7 (2015) 615 — 630

introduced (Chiabaut et al., 2014). Even with no buses the homogeneous corridor method cannot be scaled up without
complications to estimate the network MFD mainly because a network path cannot be guaranteed to have constant
offset all along, even for homogeneous networks.

To overcome these difficulties, in this paper we introduce the concept of stochastic corridors, where any particular
inhomogeneous corridor—with different block lengths and signal timing—is seen as a particular realization. Stochastic
corridors are in fact probabilistically homogeneous in the sense that the distribution of these network parameters does
not change in time or space. This approach allows the estimation of the network MFD, for which analytical methods
are currently unavailable.

This paper is organized as follows. Section 2 develops the theory of stochastic corridors, which is based on renewal
theory. The existence of short blocks is examined in detail in section 3, as it can severely reduce corridor capacity.
Section 4 is devoted to comparing the theory both with an exact traffic simulation and the empirical data from the city
of Yokohama presented in Geroliminis and Daganzo (2008). Finally, section 5 presents a discussion.

2. Stochastic corridors

Consider an inhomogeneous corridor consisting of a large sequence of road segments of different length, each one
delimited by a traffic signal with settings that vary in time and across segments. This particular corridor is viewed here
as a realization of a ”stochastic corridor” random variable, where the length of each segment and the red and green
times of its signals are random variables ¢, r and g, respectively, assumed to be independent. We use the symbols y, o
and ¢ = o /u for the mean, standard deviation, and coefficient of variation of a random variable, whose name will be
indicated as subscript; e.g., block lengths are assumed i.i.d. with mean and variance g, o-%. Turning movements are
not considered in our analysis.

We use the superscripts “4” and “b” to differentiate variables pertaining to forward and backward cuts, respectively,
while the superscript “ — " will be used as their placeholder. All links in the network are assumed to obey a triangular
fundamental diagram (FD) with free-flow speed w#, wave speed —w” and jam density «; the saturation flow is therefore
0= waw”/(wb + wﬁ).

Our formulation is based on variational theory Daganzo (2005a,b), which corresponds to the solution of the kine-
matic wave model of Lighthill and Whitham (1955); Richards (1956) when expressed as a Hamilton-Jacobi partial
differential equation. This solution—known as the Hopf-Lax formula (Lax, 1957; Hopf, 1970)—states that the number
of vehicles that have crossed location x by time ¢, N(t, x), can be expressed in variational form as:

Np = inf {Np + Agp} (1
BeBp
where P is a generic point with coordinates (, x), Bp is the set of all points in the boundary that are in the domain of
dependence of P, the point B = (¢, xp) is in Bp, Np = N(t, x) and Ng = N(tg, xp), and Agp is the “cost” or maximum
number of vehicles that can cross the minimum path joining B and P; see Fig. 1a. (Notice that in the absence of
bottlenecks, such as traffic lights, all valid paths—including the minimum path—between B and P have the same cost
and it is customary to compute Agp along the straight line BP.)

To derive the corridor MFD, consider the initial value problem in Fig. 1b where the vehicle number N(¢g, xp) is
known in the boundary 75 = 0 such that the density, &, is constant. Noting that in this case, Ng = Np + (x — xg)k with
No = N(0, x), we can write

Np—Np = IIlBil’l{ABP + (x - xB)k} . ()

The MFD is defined as the steady-state flow at any location x; i.e.:

1
q(k) = }LI}}O ?(NP - No) (3a)
= rnbi,n{ flim ;(ABP + (x — xp)k)}, (3b)

= min{$(v) + vk}. (3¢)



Download English Version:

https://daneshyari.com/en/article/1106941

Download Persian Version:

https://daneshyari.com/article/1106941

Daneshyari.com


https://daneshyari.com/en/article/1106941
https://daneshyari.com/article/1106941
https://daneshyari.com

