

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Procedia Social and Behavioral Sciences

Procedia - Social and Behavioral Sciences 80 (2013) 591 - 607

The 20th International Symposium on Transportation and Traffic Theory

A Bayesian approach to traffic estimation in stochastic user equilibrium networks

Chong Wei^{a,b*}, Yasuo Asakura^b

^aMOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing, 100044, China, ^bDepartment of Civil and Environmental Engineering, Tokyo Institute of Technology,

2-12-1-M1-20, Ookayama, Meguro, Tokyo 152-8552, Japan

Abstract

This study proposes a statistical model to estimate route traffic flows in congested networks. In the study, it is assumed that route traffic flows conform to the stochastic user equilibrium (SUE) principle while being treated as random variables in order to exploit the stochastic nature of traffic. The proposed model formulates the distribution of these random variables as the conditional distribution of route flows and origin–destination (O-D) travel demand, given the observed link flows and the SUE principle. Here, the SUE principle is accounted for through the likelihood of user behaviours rather than by using a bi-level formulation. In this study, the Bayesian theorem is applied to derive the probability density function (PDF) of the conditional distribution. Based on the PDF, characteristics such as the means and variances of route/link traffic flows are estimated using a blocked Metropolis–Hastings (M–H) algorithm. To facilitate the use of prior knowledge, a hierarchical form is designed to provide a straightforward way to integrate prior knowledge into the traffic estimation model. The performance of the proposed method is tested on the Sioux–Falls network through a series of numerical examples.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and peer-review under responsibility of Delft University of Technology

Keywords: Path flow estimation, Bayes' theorem, Likelihood, Stochastic User Equilibrium, Markov chain Monte Carlo;

1. Introduction

Knowing the traffic state of each link across a network is a fundamental requirement of telematics systems. However, contemporary traffic sensors such as inductive loops and Global Positioning System (GPS) devices can only cover parts of a road network, and the traffic volumes on unobserved links are not obtained. In order to improve the availability of traffic data, we need to develop a method that can estimate the traffic flows on

^{*} Corresponding author. Tel.: +86-010-5168-7154; fax: +86-010-5168-7154.

E-mail address: chwei@bjtu.edu.cn (C.Wei)

unobserved links.

This kind of problem, which is usually referred to as a path flow estimation problem in the literature (see [1]), is related to the Origin–Destination (OD) matrix estimation problem that has been widely discussed over the past few decades. Sasaki [2] pointed out the usefulness of an entropy model for estimating travel demands. Van Zuylen & Willumsen [3] and Van Zuylen [4] presented methods to find the most likely O–D matrix using maximum entropy and minimum information estimators. A number of previous studies also indicated that the traffic assignment model should be integrated into the O–D matrix estimators in order to take into account the dependency between route travel times and route flows in congested networks. For example, [5] developed a bi-level model in which route flows are constrained by the User Equilibrium (UE) principle; [6] proposed a method to estimate route flows in Stochastic UE (SUE) networks.

On the other hand, researchers have noted that the stochastic nature of traffic flows should not be ignored. [1] and [7] looked at the problem from a statistical perspective and suggested that a generalised least-squares estimator be used to account for the random terms of O–D demands and route traffic flows. More recently, [8] showed the benefit of combining a maximum entropy model and a least-square estimator for traffic estimation problems. Unlike its use of a generalised least-squares estimator, the approach of [9] employs a class of maximum likelihood estimators to solve the O–D estimation problem, a method that shows the potential effect of the likelihood principle. [10], [11], [12], and [13] also constructed different likelihood-based approaches to the problem. [14], [15], [16], [17], [18], and [19] formulated likelihood-based models from Bayesian perspectives. Nevertheless, almost all of these likelihood-based approaches were originally developed for uncongested networks, so there is still a need to explore the application of the likelihood principle to capture the stochastic nature of traffic flows in a congested network.

This study utilizes a Bayesian approach to solve the problem. Unlike previous studies, however, the proposed method takes into congestion effects through the likelihood of route choices on congested networks, rather than using a bi-level formulation.

We assume that traffic flow patterns conform to the SUE principle while treating route flows as random variables and seeking to estimate the characteristics of the random route flow variables. To do this, we need to obtain the probability distribution of the route flow variables. Because we consider that the route traffic flow patterns are constrained by both link traffic counts and the SUE principle, this probability distribution must be precisely represented as the conditional distribution of route traffic flows for given link traffic counts, in conformity to the SUE principle.

To exploit the conditional distribution, Bayes' theorem is adopted in this study in order to decompose the conditional distribution into a likelihood function and prior probability distributions. We first address the likelihood function and the prior probability distributions, and then combine the results to yield a formulation of the conditional distribution.

To obtain the characteristics of link flow variables, we develop a blocked Metropolis–Hastings algorithm to sample the conditional distribution of route flows, and then aggregate the samples to produce the characteristics of link flows or O–D flows.

The highlights of the proposed method are as follows:

- (1) The proposed model is a likelihood-based statistical estimation model that can take into account users' contemporaneous interactions on a congested network without using bi-level formulations and can guarantee the estimate is unique; the method does not find the equilibrium solution in each iteration and does not impose specific requirements on the application of user behaviour models.
- (2) The model can handle the inconsistencies among observed link traffic counts.
- (3) The model can work with a hierarchical form to flexibly integrate prior knowledge.

The remainder of this article is organised as follows. Section 2 formulates the conditional probability distribution of route traffic flow variables. Section 3 outlines the blocked Metropolis–Hastings algorithm that is used to estimate the characteristics of link traffic flow variables. Section 4 provides some numerical examples that demonstrate the effectiveness of the proposed method. Section 5 offers a conclusion to the study.

2. Methodology

Let *R* be the set of routes; *N*, the set of O–D pairs; R_n , the set of routes that connect the O–D pair *n*; *L*, the set of links across the network; and L^* , the set of observable links. I_n , denotes the set of users who make trip between O–D pair *n*. $\mathbf{q} = [q_1, ..., q_{|N|}]$ is the vector of O–D demands; $\mathbf{c}_n = \{c_i | \forall i \in I_n\}$ is the set of the route choice

Download English Version:

https://daneshyari.com/en/article/1119187

Download Persian Version:

https://daneshyari.com/article/1119187

Daneshyari.com