Accepted Manuscript

Enhanced near/mid-infrared emission bands centered at \sim 1.54 and \sim 2.73 µm of Er³⁺-doped in transparent silicate glass-ceramics via Mn²⁺-Yb³⁺ dimer

Ho Kim Dan, Nguyen Le Thai, Le Duy Tin, Jianbei Qiu, Dacheng Zhou, Qing Jiao

PII:	S1350-4495(18)30537-1
DOI:	https://doi.org/10.1016/j.infrared.2018.10.009
Reference:	INFPHY 2723
To appear in:	Infrared Physics & Technology
Received Date:	20 July 2018
Revised Date:	8 October 2018
Accepted Date:	8 October 2018

Please cite this article as: H. Kim Dan, N. Le Thai, L. Duy Tin, J. Qiu, D. Zhou, Q. Jiao, Enhanced near/mid-infrared emission bands centered at ~1.54 and ~2.73 µm of Er³⁺-doped in transparent silicate glass-ceramics via Mn²⁺⁻ Yb³⁺ dimer, *Infrared Physics & Technology* (2018), doi: https://doi.org/10.1016/j.infrared.2018.10.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced near/mid-infrared emission bands centered at ~1.54 and ~2.73 µm of

Er³⁺-doped in transparent silicate glass-ceramics via Mn²⁺-Yb³⁺ dimer

Ho Kim Dan^{a,b,*}, Nguyen Le Thai^c, Le Duy Tin^d, Jianbei Qiu^e, Dacheng Zhou^e, Qing Jiao^f.

^a Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

^b Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

^c Faculty of Mechanical Engineering Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam.

^d Faculty of Environment and Natural Resources, Nong Lam University, Ho Chi Minh City, Vietnam.

^e Key Lab of Advanced Materials in Rare & Precious and Non-ferrous Metals, Ministry of Education, Kunming 650093, PR. China.

^fKey Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, PR. China.

Abstract

The near/mid-infrared emission of Er^{3+} -doped, Er^{3+} -Yb³⁺ co-doped and Er^{3+} -Mn²⁺-Yb³⁺ tridoped in 40SiO₂-(22.9-x)Al₂O₃-20BaF₂-10LaF₃-5TiO₂- xMnO-0.1Er₂O₃-2Yb₂O₃ (in mol. %, x = 0, 2.0, 4.0, 6.0 and 10.0) (acronym: SGC-xMn) transparent silicate glass-ceramics were prepared. Enhanced near/mid-infrared emission intensity of Er^{3+} -doped bands centered at ~1.54 and ~2.73 µm in transparent silicate glass-ceramics via Mn²⁺-Yb³⁺ dimer under 980 nm excitation were investigated. XRD results indicate that the Mn²⁺ ions are dispersed into the glass matrix. With the forming of Mn²⁺-Yb³⁺ dimer and the energy transfer processes from Mn²⁺-Yb³⁺ dimer and Mn²⁺ to Er^{3+} ions has led to NIR emission intensity of Er^{3+} -doped at ~1.54 µm was increased significantly about four-fold and the MIR emission intensity of Er^{3+} -doped at ~2.73 µm was increased about third-fold. In addition, based on the decay time spectra, mechanism of energy transfer processes between Mn²⁺-Yb³⁺ dimer, Mn²⁺ and Er^{3+} ions were also discussed.

Keywords: Near-infrared; Mid-infrared; 1.54 µm; 2.73 µm; Mn²⁺–Yb³⁺ dimer;

^{*}Author to whom correspondence. Ho Kim Dan, E-mail: hokimdan@tdtu.edu.vn

Download English Version:

https://daneshyari.com/en/article/11262821

Download Persian Version:

https://daneshyari.com/article/11262821

Daneshyari.com