Accepted Manuscript

A note on coupled elliptic systems involving different Hardy-type terms

Dongsheng Kang, Xiaonan Liu

PII: \quad S0893-9659(18)30331-8
DOI: https://doi.org/10.1016/j.aml.2018.09.017
Reference: AML 5655

To appear in: Applied Mathematics Letters
Received date: 29 August 2018
Revised date: 24 September 2018
Accepted date : 24 September 2018

Please cite this article as: D. Kang, X. Liu, A note on coupled elliptic systems involving different Hardy-type terms, Appl. Math. Lett. (2018), https://doi.org/10.1016/j.aml.2018.09.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A note on coupled elliptic syster ns mvolving different Hardy-type "erms

Dongsheng Kang*, Xi\& on „1 Liu

School of Mathematics and Statistics, South-Cer, al Urin. rsity for Nationalities, Wuhan 430074, P. R. Chin.

Abstract

In this paper, a system of Hardy-typu rritical elliptic equations is studied, asymptotic properties at the origin of nositive s lutions are proved by the Moser iteration method and an open problen. p' sposed in [1] is solved.

Keywords: system of elliptic equations; soi • n; a ymptotic property; variational method.
Mathematics Subject Classification 2000. 35u47, 35J60

1 Introduction

In this paper, we study the fc lowing elliptic system:

$$
\left\{\begin{array}{l}
-\Delta u-\mu_{1} \frac{u}{|x|^{2}}=i^{2^{*}-1}+\frac{\gamma}{2^{*}} u^{\alpha-1} v^{\beta}+a_{1} u+a_{2} v \quad \text { in } \Omega, \tag{1.1}\\
-\Delta v-\mu_{2} \frac{v}{\mid x^{\prime}}=v^{2} \quad+\frac{\eta \beta}{2^{*}} u^{\alpha} v^{\beta-1}+a_{2} u+a_{3} v \quad \text { in } \Omega, \\
u, v>0 \text { in } \Omega \backslash\{0\}, \quad u=v=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}\left(N \geq{ }^{n}\right.$ is a bounded domain with smooth boundary such that $0 \in \Omega$ and the paramet ers atisiy the following assumption:

$$
\begin{aligned}
\left(\mathcal{H}_{1}\right) \quad & N \geq 3, \quad \therefore \quad 0, \quad 0 \leq \mu_{2} \leq \mu_{1}<\bar{\mu}:=\left(\frac{N-2}{2}\right)^{2}, \quad a_{i} \geq 0, \quad i=1,2,3, \\
& \alpha>1, \quad \hat{}>1, \quad \alpha+\beta=2^{*}:=\frac{2 N}{N-2} .
\end{aligned}
$$

Let $F:=H_{0}^{1}(\Omega)$ be the completion of $C_{0}^{\infty}(\Omega)$ with respect to $\left(\int_{\Omega}|\nabla \cdot|^{2} \mathrm{~d} x\right)^{1 / 2}$. The func 'ional sorresponding to (1.1) is defined on $H \times H$ by

$$
\begin{aligned}
J^{\prime} \iota, J:= & \frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+|\nabla v|^{2}-\frac{\mu_{1} u^{2}+\mu_{2} v^{2}}{|x|^{2}}-\left(a_{1} u^{2}+2 a_{2} u v+a_{3} v^{2}\right)\right) \mathrm{d} x \\
& -\frac{1}{2^{*}} \int_{\Omega}\left(|u|^{2^{*}}+|v|^{2^{*}}+\eta|u|^{\alpha}|v|^{\beta}\right) \mathrm{d} x .
\end{aligned}
$$

[^0]
https://daneshyari.com/en/article/11262908

Download Persian Version:
https://daneshyari.com/article/11262908

Daneshyari.com

[^0]: *Corresponding author. E-mail address: dongshengkang@scuec.edu.cn. This work is supported by the Fundamental Research Funds for the Central Universities of China, South-Central University for Nationalities (No. CZT18008).

