
Accepted Manuscript

The fatigue crack growth in hierarchically nano-twinned materials

Yaqian Liu, Jianqiu Zhou

PII:	S0013-7944(18)30403-X
DOI:	https://doi.org/10.1016/j.engfracmech.2018.10.012
Reference:	EFM 6186
To appear in:	Engineering Fracture Mechanics
Received Date:	17 April 2018
Revised Date:	8 October 2018
Accepted Date:	9 October 2018

Please cite this article as: Liu, Y., Zhou, J., The fatigue crack growth in hierarchically nano-twinned materials, *Engineering Fracture Mechanics* (2018), doi: https://doi.org/10.1016/j.engfracmech.2018.10.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The fatigue crack growth in hierarchically nano-twinned

materials

Yaqian Liu^a, Jianqiu Zhou^{a,b,c*}

^aSchool of Mechanical and power Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, China

^bDepartment of Mechanical Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province 430070, China

^cKey Lab of Design and Manufacture of Extreme Pressure Equipment, Jiangsu Province, China

*Corresponding author. Tel.: +86-25-83588706; Fax: +86-25-83374190.

E-Mail addresses: zhouj@njtech.edu.cn

ABSTRACT

The dislocation emission-based model is established to reveal the fatigue crack growth in polycrystalline metals with hierarchically nano-twinned structures (HTS). The analysis illustrates that the presence of HTS can effectively prevent fatigue crack propagation along the boundaries of primary twins during plastic deformation. For the same primary twin spacing λ_1 , the fatigue fracture toughness is enhanced first with the decreasing secondary twin spacing λ_2 , reaching the maximum at the critical λ_2 , and then reduced as λ_2 becomes even smaller. It is found that the smaller the spacing λ_1 , the smaller the critical spacing λ_2 . Moreover, there also exists optimal twin spacing in primary twin lamellae. In addition, the proposed theoretical model suggests that the fatigue crack growth rate reduces with decreases of secondary twin spacing λ_2 when spacing λ_2 is above the critical value, as observed in molecular dynamics simulations.

Download English Version:

https://daneshyari.com/en/article/11262991

Download Persian Version:

https://daneshyari.com/article/11262991

Daneshyari.com