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In the context of grapevine breeding, high precision and automated phenotyping plays an important role in order
to screen breeding material (e.g. seedlings) or to characterize genetic repositories with high-throughput. Grape
bunches hereby reveal a large variability regarding size, shape, compactness and color. We design and evaluate a
new RGB-D descriptor for the semantic labeling of grape bunches. For this, we examine RGB and HSI color
spaces and combine them with Fast-Point-Feature Histograms. With the best combination of FPFHs and the hue
channel we achieve an average F-value of 88.61%, outperforming classical descriptors like PFHRGB and
SHOTColor by at least 8%. Additionally, we show a new method for the derivation of parametric reconstructions
of the elliptical berries based on a least squares fitting, yielding Pearson correlation coefficients of 0.8 and 0.9 for
the main diameters of the berries.

1. Introduction
1.1. Motivation

Today, plant phenotyping, especially of crop plants, plays an im-
portant role with regard to plant breeding and precision agriculture. For
grapevine breeding purposes, an objective pre-selection of seedlings as
well as a comprehensive screening and phenotyping of genetic re-
positories are some of the most important needs. In general, pheno-
typing is done by visual estimations following the OIV list
(Internationale de la Vigne et du Vin, 2009). The determination of
phenotypic data is very labor-intensive, leading to the so-called ”phe-
notyping bottleneck” (Furbank and Tester, 2011). Further, the achieved
data are subjective and inaccurate. Thus, the development of auto-
mated methods suitable for high-throughput phenotyping is a high-
priority task.

The color and shape of grape berries are important traits with re-
gard to table grape breeding and production, the characterization of
genetic repositories or in order to evaluate health status and visible
quality traits within breeding material. To make this more efficient,
developing automated methods for the phenotyping of grape bunches is
an important goal. It is also challenging, as different grapevine cultivars
show a high variability in shapes and colors of berries. With shape and
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color being the only features present, the only way to deal with this
variability is to find a descriptor that is able to generalize over the
different cultivars, but can still distinguish between the types of plant
organs.

Previous work (Mack et al.,, 2017a,b; Paulus et al, 2013;
Wahabzada et al., 2015) shows that Fast-Point-Feature Histograms
(Rusu et al., 2009) provide a suitable description of points to label them
as part of the surface of a berry or the stem structure, based on the local
shape. This step is called the semantic labeling of the point cloud. In
this contribution, we evaluate whether the addition of color informa-
tion improves the results even in spite of the high variability of grape
bunches in this context. We compare our resulting descriptor to the
most common combinations of color and shape descriptors, namely
PFHRGB (Rusu et al., 2008) and SHOTColor (Tombari et al., 2011).
Examples for other descriptors applicable to RGB-D images are BRAND
(Nascimento et al., 2012) and RISAS (Wu et al., 2017).

A method to derive exact parametric representations of spherical
berries based on a RANSAC approach is presented by Mack et al.
(2017a). While ellipsoid berries could be derived in the same way, tests
show that this requires very high computation times due to the many
parameters that have to be estimated. Therefore, we present an alter-
native approach, dividing the point cloud consisting of berry surface
points into regions including only one berry each. A least squares fitting
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as described by Li and Griffiths (2004) for ellipsoids is then used on the
points of each region to provide the parametric description.

The goal of this work is to design a new RGB-D descriptor based on
an evaluation of color and shape histograms regarding their suitability
for the semantic labeling of points. We assume that adjusting the de-
scriptor to the needs of our task (e.g. few differences in texture between
the classes and variations regarding color and shape for each class) will
lead to a better result than when using a more general descriptor. The
classification is done unsupervised based on k-means with y2-distance,
which has shown to be more reliable than the Euclidean distance when
applied to histograms. Additionally, we derive a parametric re-
presentation for the ellipsoid berries that finally provides the possibility
to compute the desired phenotypes, like the average radii of the berries.

1.2. Related work

Recently, different methods were presented for the high-throughput
derivation of plant phenotypes. They can be categorized based on their
input.

Some image-based approaches derive attributes, like bunch length,
width and compactness (Cubero et al., 2015; Kicherer et al., 2015; Tello
et al., 2016), the number (Aquino et al., 2017) and sizes of berries per
bunch (Roscher et al., 2014). While in those publications the results
have to be extrapolated to full grape bunches, as the 2D images only
show a part, we work on full 3D scans, created by moving a 3D scanner
(e.g., laser scanner, optical 3D scanner) around the grape bunch, of-
fering more complete and exact results. Alternatively, it is possible to
derive 3D data from images employing stereovision approaches (Klodt
and Cremers, 2014; Ivorra et al., 2015; Rose et al., 2016), or combine
depth data provided by a Time-of-Flight (TOF) camera with color in-
formation (Fernandez et al., 2014). Still, these approaches are compu-
tationally expensive.

Earlier publications relied on scans created with expensive 3D laser
scanners (Paulus et al., 2013; Mack et al., 2017a). New work by Rist
et al. (2018) shows that the comparably cheap high-resolution hand-
held 3D Artec Spider Scanner that we also used here delivers results of
sufficiently high quality. Furthermore, this scanner provides RGB data
that was not included in earlier publications.

Scholer and Steinhage (2015) presented a first approach to the de-
rivation of the full stem skeleton of a grape bunch. Due to the inner
skeleton being completely occluded, they base their method on the
visible parts of the grape bunch, namely berries and peduncle. While
they use a RANSAC-method similar to Mack et al. (2017a) for the de-
rivation of exact 3D berry detections and reconstructions, in both cases
the berries are assumed to be spherical. Grape bunches with elliptical
berries are not taken into account.

We use the Point Cloud Library (PCL, Rusu and Cousins, 2011)
implementations of FPFHs, PFHRGBs, SHOTColor, region growing and
RANSAC and the PCL-Visualizer to provide screenshots.

2. Materials and methods

The workflow is depicted in Fig. 1. The grape bunch (Fig. 1(a)) is
fixed on a rotating hook and scanned from the front, generating a 3D
point cloud (Fig. 1(b)). This point cloud is segmented into points that
are part of a berry surface and points that are part of the stem skeleton
(Fig. 1(c)). For this, we design a new descriptor as a combination of
shape and color features. Afterwards, berry hypotheses are fitted into
the berry point cloud using a least squares fitting method (Fig. 1(d)).

2.1. Plant material and sensor

We generated scans from 11 table grape bunches of the cultivars
Sultana, Sugraone, Sugarthirteen, Ruby Seedless, and Prime, acquiring
2 independent scans per grape, yielding a total of 22 scans. To provide a
representative data set, grape bunches of different colors and shapes
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were chosen: 5 grape bunches with green berries (1 Sultana, 2
Sugraone, 2 Prime) and 6 red table grape cultivars (3 Sugarthirteen, 3
Ruby Seedless) with varying ellipticity. Fig. 2 shows examples that
demonstrate the differences in shape and colors between the cultivars.

All point clouds were generated using the Artec 3D Spider scanner
(Artec 3D, 2017) with a resolution of 0.1 mm and an accuracy of up to
0.05mm. The grape bunch was fixed on a hook and rotated by 360°
while scanning from the front side. This process yields a complete scan.
Additionally to depth information, the scanner provides RGB values for
each point. The acquisition of 3D point clouds is done under standar-
dized lab conditions as described by Rist et al. (2018).

As reference, we use a manually created ground truth for the se-
mantic labeling. The 3D reconstruction of the elliptical berries is eval-
uated with respect to statistical reference data for the number of berries
and their average radii that was obtained from manual measurements
of the grapes.

2.2. Color descriptor

We combine the descriptor based on shape and color information.
For shape, we rely on the Fast-Point-Feature Histogram (FPFH) de-
scriptor (Rusu et al., 2009) that has been shown to have superior per-
formance to other 3D descriptors in phenotyping applications (Mack
et al., 2017b; Paulus et al., 2013). However, so far there were no tests
done combining color with shape information. To integrate color in-
formation, we evaluate different color channels and their combinations.
As the scanner provides RGB values, we include the Red, Green, and
Blue channel. For grape bunches with berries of the same color and
clearly distinct stem skeleton, a semantic labeling of the data based on
their RGB-values alone might be possible. But, as our data set contains
grape bunches with red and green berries, we have to cover a more
general spectrum. The HSI model has higher similarity to human per-
ception of colors and the transformation of colors from one to the other
is more intuitive. Because of that, we include it as another possibility
for the labeling of our data, yielding the additional channels Hue, Sa-
turation, and Intensity. Each of the channels is binned into a histogram.
We set the number of bins for both FPFHs and color histograms fixed to
33, respectively, as the evaluation by Mack et al. (2017b) showed that
increasing this value does not significantly change the results.

For the classification, the points are divided into two classes using a
k-means approach with k = 2 and y?-distance. As usually more points
in a point cloud are part of berry surfaces than the stem system, the
cluster containing more points is assigned the label ”berry points” and
the cluster with fewer points the label ”stem points”.

2.3. Reconstruction of elliptic berries

In Mack et al. (2017a), a region growing approach is used to com-
bine coherent points into regions. Berries are fitted into these regions
with a RANSAC-based procedure. RANSAC can be used to fit different
parametric primitives (Schnabel et al., 2007), but the computation time
rises with the number of parameters that have to be optimized. For
spheres, the optimization of 4 parameters (center point and radius) can
be done relatively fast, but for ellipsoids, this number rises to 9 para-
meters and becomes highly time consuming.

A study by Rist et al. (2018) showed that, on the one hand, with a
spherical RANSAC, the number of elliptical berries can be detected
reliably, as they are fitted in the center or lower part of the berry. On
the other hand, the length of the berries deviates strongly from the
reference values, as spheres are not a sufficient representation of el-
lipsoid-shaped berries. The radii are an important feature for the phe-
notyping of berries, thus, it is necessary to improve this result.

To avoid the computational expensive RANSAC optimization, but
still represent the berries as ellipsoids instead of spheres, we use a least
squares fitting of ellipsoids that works faster than RANSAC. However,
least squares fitting is less stable with respect to regions containing
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