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a b s t r a c t 

In this paper, a practical boundary element method (BEM) is developed to analyze piled rafts. The raft is modeled 

using the direct boundary element formulation for thick plates; which is suitable for such type of problems. An 

innovative methodology to add stiffness matrices to the plate integral equations is developed. Hence, pile–soil–

raft interactions are added as a special case of the developed methodology. In order to avoid generating huge 

systems of coupled equations, an effective condensation technique of piles and soil degrees of freedom (DOFs) 

at pile–soil–raft interface is employed. Several numerical examples are presented and results are compared to 

previously published results. Then, a practical application is solved to demonstrate the strength and versatility 

of the proposed formulation. 

1. Introduction 

Piled rafts are an important type of foundations for tall buildings. 

This type is suitable to overcome both bearing capacity and settle- 

ment problems. A typical review of such importance is presented in 

Refs. [1 –4] . Therefore, accurate modeling of piled raft components: 

plate, soil, and piles is essential in foundation structural analysis. 

Plates rested on soil could be represented as plates over Winkler 

springs or over elastic half space (EHS). The Winkler model represents 

the soil as individual springs as in the work of Coduto [5] . Analysis 

of plates over elastic foundations (Winkler or EHS) were considered us- 

ing the finite element method as in the work of Cheung and Zienkiewicz 

[6] , Svec and McNeice [7] , Svec and Gladwel [8] for thin plates, and Ra- 

japaks and Selvadurai [9] for thick plates. Examples of using the bound- 

ary element method for such a problem are the work of Katsikadelis and 

Armenakas [10] , Syngellakis and Bai [11] , Paiva and Butterfield [12] for 

thin plates, and Rashed and co-workers [13–16] for thick plates. 

Alternatively, the soil could be modeled based on 3D finite elements 

or boundary elements. There are two methods to represent the soil using 

BEM. The first, as 3D boundary elements; which need enclosing bound- 

aries as those of FEM. Such a technique has never been reported in the 

literature. The second way is to represent the 3D soil medium as elas- 

tic half space. It has be noted, that the second way was referred to, 

by almost all authors in the literature, as “using the boundary element 

method ”, regardless of which numerical model of raft plate was used 

(either it was modeled using the FEM or the BEM). 
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Modeling piled rafts is more sophisticated than modeling plates on 

elastic foundations. Piles should be modeled as embedded in the soil 

continuum considering all interaction between piles, soil, and raft. The 

finite element method could be used to represent piled raft, in which 

three-dimensional solid elements [17] are used to model soil. It has 

to be noted that, such a model generates a large number of DOFs; 

therefore, it is inconvenient for practical applications. Alternatively, 

two-dimensional axisymmetric finite element [18] were used to model 

axisymmetric foundations, in which interaction effects were ignored. 

Such a model is also not practical, as it cannot model general practical 

foundations. 

Paiva and co-workers [19 , 20] developed a BEM formulation for solv- 

ing piled rafts, in which all the interactions were considered. In [19 , 20] 

the pile cap is divided into triangular thin finite elements, despite the 

conclusion of Small [21] , which indicates that the use of thin plate the- 

ory may lead to inaccuracy in modeling thick foundations. All piles and 

soil in [19 , 20] were embedded in the problem integral equation; there- 

fore, such formulation leads to a huge system of equations leading to 

difficulty in solving practical piled rafts. 

Engineers and modelers, in design offices, tend to use approximate 

methods for piled raft analysis. They model such a foundation as plate 

resting on springs. The initial pile stiffness is computed based on empir- 

ical formulas according to design code equations [22] or obtained from 

pile–load test [23] . 

Few software packages that consider the effect of pile–pile interac- 

tions in piled raft analysis are available. ELPLA [24] represents the raft 
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as thin plate via plate bending finite elements and considers interactions 

between piles/soil based on Mindlin’s solution (The Elastic approach). 

LUSAS [25] uses thin/thick plate bending elements to simulate rafts. 

The soil is represented as 3D finite elements. Piles are modeled as beam 

elements inside the 3D soil continuum. PLAXIS [26] , ABAQUS [27] , and 

Midas [28] are alternative multi-purpose and general FEM based soft- 

ware packages. They could be used to analyze a piled raft system, in 

which the soil is modeled as 3D finite elements. Despite the spread of 

such approaches, they are not suitable for large practical applications. 

It has to be noted that in all previously considered publications, all 

verification examples and solved problems (which in some publications 

referred to as “practical applications ”) are simple problems and cannot 

be regarded as practical applications. 

In conclusion, in order to develop a practical numerical analysis for 

piled rafts, the following points should be considered: 

(1) Suitable representation of raft as shear-deformable plate to ac- 

count for the raft thickness. 

(2) Suitable modeling of stress concentration due to presence of both 

pile reactions and applied column loads. 

(3) Suitable numerical method to model large practical problems 

with large number of DOFs. 

(4) Suitable implementation of all interaction effects. 

This paper considers the boundary element method (BEM) for shear- 

deformable plates to model thick piled rafts. The use of BEM ensures the 

continuity of internal variables with no physical discretization as those 

in the FEM. This ensures the efficient and accurate modeling of singular 

internal field even when concentrated loads are presented, such as ap- 

plied column loads or supporting pile reactions. Moreover, piles DOFs 

are condensed at the head of piles and added as additional stiffness to 

the integral equation of the plate. This developed technique reduces the 

number of DOFs considerably to allow solving large-scale problems as 

presented in Section 6 . All interaction effects are considered. Pile–pile 

interactions is considered based on both the elastic approach [1 , 3] and 

the load transfer approach [2] . Pile–soil interactions is also considered 

based on Mindlin’s solution [29] . Soil–soil interactions can be consid- 

ered as well based on Mindlin’s [29] , Boussinesq’s [30] , and Steinbren- 

ner’s [31] solutions. 

2. Boundary integral equations for plates in bending 

In this section, the direct boundary element formulation for thick 

plates is reviewed. Consider a general thick plate of domain Ω and 

boundary Γ as shown in Fig. 1 . The indicial notation is used, where 

the Greek indices vary from 1 to 2 and Roman indices vary from 1 to 3. 

The relevant integral equation could be written as follows: 

𝐶 𝑖𝑗 ( 𝜉) 𝑢 𝑗 ( 𝜉) + ∫Γ( 𝑥 ) 𝑇 𝑖𝑗 ( 𝜉, 𝑥 ) 𝑢 𝑗 ( 𝑥 ) dΓ( 𝑥 ) = ∫Γ( 𝑥 ) 𝑈 𝑖𝑗 ( 𝜉, 𝑥 ) 𝑡 𝑗 ( 𝑥 ) dΓ( 𝑥 ) + 𝐿 1 + 𝐿 2 

(1) 

where T ij ( 𝜉, x ), U ij ( 𝜉, x ) are the two-point fundamental solution kernels 

for tractions and displacements respectively [15] . The two points 𝜉 and 

x are the source and the field points respectively. u j ( x ) and t j ( x ) denote 

the boundary generalized displacements and tractions. C ij ( 𝜉) is the free 

term. The integrals L 1 , L 2 are the prescribed domain load integrals and 

could be defined as follows [32] : 

𝐿 1 = ∫Γ( 𝑥 ) 
[ 
𝑉 𝑖,𝑛 ( 𝜉, 𝑥 ) − 

𝜈

( 1 − 𝜈) 𝜆2 
𝑈 𝑖𝛼( 𝜉, 𝑥 ) 𝑛 𝛼( 𝑥 ) 

] 
𝑞 ( 𝑥 ) dΓ( 𝑥 ) (2) 

𝐿 2 = 

∑
𝑁 𝑐𝑒𝑙𝑙 

∫Ω( 𝐿 ) 
[ 
𝑈 𝑖𝑘 ( 𝜉, 𝐿 ) − 

𝜈

( 1 − 𝜈) 𝜆2 
𝑈 𝑖𝛼,𝛼( 𝜉, 𝐿 ) 𝛿3 𝑘 

] 
𝑃 𝑘 ( 𝐿 ) dΩ( 𝐿 ) (3) 

where V i ( 𝜉, x ) is a suitable particular solutions to account for uniform 

domain loading [15] , other type of loading could be dealt with via cell 

loadings. The symbols 𝜈 and 𝜆 denote the plate Poisson’s ratio and shear 

factor, respectively. q ( x ) denotes the intensity of the uniform domain 

loading. N cell denotes the number of loading cells that having domain 

denoted by ΩL , P k denotes the three prescribed loads (two moments and 

one force) for each loading cell. The field point L denotes the loading 

cell center. 

After discretizing the boundary of the plate into N ele quadratic ele- 

ments, each node has three unknowns. Eq. (1) could be re-written in a 

matrix form as follows: 

(4) 

where N is the number of nodes. [ H ] and [ G ] are the well-known influ- 

ence matrices. The vector { LV } contains prescribed domain loading and 

loading cells effects ( L 1 + L 2 ). After re-ordering the matrices in Eq. (4) to 

decouple the prescribed values from the unknown boundary values, 

Eq. (4) could be re-written as follows: 

(5) 

where the vector {PBV} contains prescribed boundary integral values 

and defined as follows: 

{ PBV } = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− ∫Γ 𝑇 

∗ 
𝑖𝑗 
( 𝜉, 𝑥 ) dΓ( 𝑥 ) , if 𝑢 ( 𝑥 ) is prescribed 

− ∫Γ 𝑈 

∗ 
𝑖𝑗 
( 𝜉, 𝑥 ) dΓ( 𝑥 ) , if 𝑡 ( 𝑥 ) is prescribed 

(6) 

3. The proposed integral equation for plates with additional 

stiffness 

In the previous section, the direct boundary element formulation for 

a thick plate without any domain supporting substructures is reviewed. 

In this section, such a plate is reconsidered when additional domain sup- 

porting substructures ( Ωs ) are present. If the plate in Fig. 1 is supported 

over ( n ) substructures (noting that each substructure is divided into a 

series of supporting cells), Eq. (1) could be re-written as follows: 

𝐶 𝑖𝑗 ( 𝜉) 𝑢 𝑗 ( 𝜉) + ∫Γ( 𝑥 ) 𝑇 𝑖𝑗 ( 𝜉, 𝑥 ) 𝑢 𝑗 ( 𝑥 ) dΓ( 𝑥 ) 

= ∫Γ( 𝑥 ) 𝑈 𝑖𝑗 ( 𝜉, 𝑥 ) 𝑡 𝑗 ( 𝑥 ) dΓ( 𝑥 ) + 𝐿 1 + 𝐿 2 + 

𝑠 = 𝑛 ∑
𝑠 =1 

𝐼 𝑠 (7) 

In which, 

𝐼 𝑠 = 

∑
𝑁 𝑐 Ω

∫Ω( 𝑠 ) 
[ 
𝑈 𝑖𝑘 

(
𝜉, 𝑦 𝑠 

)
− 

𝜈

( 1 − 𝜈) 𝜆2 
𝑈 𝑖𝛼,𝛼

(
𝜉, 𝑦 𝑆 

)
𝛿3 𝑘 

] 
𝐹 𝑘 
(
𝑦 𝑠 
)
d Ω𝑠 

(
𝑦 𝑠 
)

(8) 

where ( 𝑁 𝑐 Ω
) denotes the number of the overall supporting cells. F k ( y s ) 

denotes three unknown generalized forces for each supporting cell. 

The field point ( y s ) denotes supporting cell center. Considering the dis- 

cretized form of the problem, Eq. (7) could be re-written as follows (after 
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