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A B S T R A C T

Requirements for lower emissions and operating costs make mass reduction of composite structures a significant
issue for future aircraft. Here, minimisation of normalised elastic energy under an uncertain, general in-plane
loading is used to indicate laminate efficiency and by equivalence minimum mass. Results are the first to in-
vestigate the comparative robustness of standard and non-standard angles to uncertain loading. They indicate
that weight reductions of up to 8% can be achieved if optimum design, using standard angle (θ=0°,± 45° or
90°) and industrial design rules, is replaced by optimising non-standard angles (0°≤ θ≤180°) directly for
uncertain loading. However, greater reductions of up to 20% are possible through alignment of laminate bal-
ancing axes with principal loading axes. As such, a non-standard angle design strategy is only shown to be
warranted if the demonstrated non-uniqueness of optimum designs can be exploited to improve other perfor-
mance drivers.

1. Introduction

Minimum mass aerospace laminate design is a multi-constraint
problem. All relevant failure modes such as buckling, damage toler-
ance, bolt bearing and notched strength should be considered in order
to produce a minimum mass design that delivers the required perfor-
mance. However, such a complex approach is not justified in the initial
design stage. Netting analysis, which ignores the support of the resin
matrix and aligns fibres in principal directions to carry principal
stresses, leads to laminate designs in which the stresses in fibres are
limited to some value associated with failure i.e. fully-stressed fibre
design. Verchery [1] has shown that Netting analysis, can be treated as
a limiting case of Classical Laminate Theory. His approach indicates
that designs with fewer than three fibre directions produce mechanisms
when subject to small disturbances in loading. This reveals the rea-
soning behind established aerospace laminate design practice of using
four standard angles (SAs) (0°, +45°, −45° and 90°) and a design rule
of a 10% minimum ply percentage to provide a level of redundancy
against loading uncertainty [2]. In contrast, non-standard angle (NSA)
designs permit the use of all possible fibre angles (0°≤ θ≤180°)
providing greater scope for stiffness tailoring. The advantages of tai-
loring have been demonstrated through use of lamination parameters
and NSA layups over quasi-isotropic layups in optimisation procedures
of wing structure solutions for aero-elastic tailoring purposes [3,4], for
increased panel buckling performance [5,6], as well as enabling certain
types of stiffness couplings [7]. NSAs have also been extensively studied

for their use in winding angles for optimising pressure vessel strength
[8,9]. However, a lack of specific design rules for NSA laminates can
lead to optimum aerostructure designs for specific loadings that, in the
extreme Netting analysis regime context, form mechanisms with any
perturbation in load. Such laminates rely on the weak resin matrix to
prevent collapse under a varying load state. In this paper, to avoid
problems of robustness, both NSA and SA laminates are designed con-
sidering an uncertain in-plane loading with the use of anti-optimisation,
allowing design for all loading scenarios that could be applied. This
ensures the structure is designed for the worst case loading i.e. the
critical condition limiting the mass of the structure under consideration.
Anti-optimisation describes the min-max or max-min optimisation
technique whereby a design is optimised to have the best possible worst
case performance for the range of uncertainties considered [10] e.g.
maximising the minimum buckling load from the range of loads that
could be applied from a defined uncertainty in loading, as is the case in
Adali et al. [11]. The authors found that, a deterministic design is seen
to underperform in buckling performance compared to a robust design
when uncertain loads are applied. Anti-optimisation is usually a two-
step optimisation process with one optimisation nested within the other
[10]. However, here the worst case performance for a range of loadings
is found analytically, similar work is also shown by Adali for buckling
design under uncertain in-plane loads [12]. Composite laminate un-
certainties are also associated with the material and the manufacturing
process [12,13] but this not considered in this paper. Optimising for a
loading uncertainty has the potential to replace the requirement for a
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10% minimum ply percentage rule in SA designs and allows the use of
NSAs without an equivalent constraint. An equivalent NSA 10% rule
has been applied by Abdalla et al. [14] using the in-plane lamination
parameter space to allow a selection of designs which have a base
stiffness in all directions. Similarly a technique ensuring a minimum
degree of isotropy in NSA laminate optimisations is shown by Peeters
and Abdalla [15] ensuring robust laminates. However, instead of an
identical robustness in all directions, the robustness of a design may be
better tailored if the range of loads that could be applied are known.

In order to compare design approaches that use SAs and NSAs, la-
minate in-plane elastic energy under combined bi-axial and shear
loading is used to assess laminate efficiency in this paper. Elastic energy
minimisation or compliance energy minimisation is a computationally
efficient technique that uses either topology or orientation of materials
with directional properties, to produce the structures with maximum
efficiency. Structures with optimum efficiency take advantage of di-
rectional material stiffness properties to produce a minimum global
strain state. This requires the structure to have the greatest global
stiffness for a given volume of material. Prager and Taylor [16] first
outlined optimality criteria justifying the technique of minimisation of
elastic energy (subject to given loads) to produce a structure with op-
timal efficiency. Pedersen [17] subsequently applied this technique to
composite materials to find analytical solutions for orientation of a
single ply angle subject to in-plane loading. Solutions for multi-layered
anisotropic laminates are provided for multi-axial design loadings.
Minimisation of in-plane elastic energy in laminate design does not
directly imply maximisation of in-plane strength of a composite mate-
rial. Nevertheless, it is assumed to be sufficient to capture the in-plane
strength relationship as fibres are aligned to best carry the applied
multi-axial stresses, which is the case for maximum in-plane strength
design in a Netting analysis regime [2,18]. Thus the performance of a
laminate under a vector of loading can be shown by the single attribute
of in-plane elastic energy. In the following sections, laminates are first
optimised using the techniques presented with a Genetic Algorithm
before designs are analysed and the data presented in plots revealing
the potential benefits and drawbacks of new and current methodolo-
gies.

2. Minimum mass laminate design

In this section, a process is defined that minimises in-plane elastic
energy under fixed and uncertain in-plane multi-axial loadings (axial,
transverse, shear) in order to find distributions of SA and NSA plies that

maximise laminate efficiency and thus minimise mass. Design con-
straints for both SA and NSA laminates, in the form of stacking se-
quence rules, are also derived.

2.1. In-plane elastic energy

Given that the in-plane Hookean or elastic energy for a linear elastic
solid is

=u dV1
2

T
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Considering the in-plane laminate stiffness matrix, Q̄, the strain
terms in Eq. (1), , can be substituted for Q̄ 1 , allowing the elastic
energy to be expressed using solely laminate level stresses, . These
stresses (load per unit laminate cross-sectional area) can be further
substituted with the equivalent in-plane loads per unit width, N , di-
vided by the laminate thickness, T .
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Assuming a balanced laminate ( = =Q Q¯ ¯ 016 26 ) and working per unit
volume (allowing for laminate geometry to be ignored) further implies
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where q terms are from the inverse of the laminate stiffness matrix.
Division of Eq. (3) by the sum of the squares of the principal stresses
normalises U , removing the effect of the magnitudes of the loads/
stresses, and allows for an equal comparison between loading states of
the same magnitude i.e.
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The misalignment angle, η, of the principal loading from the bal-
ancing axes (about which +θ and −θ plies are evenly distributed to
prevent extension-shear coupling) is shown in Fig. 1 and defined as
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Fig. 1. (a) Diagram showing laminate (x,y) axes (from which ply angles (ψ ,ϕ, θ) are defined and balanced) and principal loading axes offset from balancing axes by
angle η. For (b) η=0 and thus the balancing axes are aligned with the principal loading axes.
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