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A B S T R A C T

A new yield function recently introduced by Lagioia and Panteghini (2016), herein referred to as the Generalised
Classical (GC) yield function, combines a series of criteria commonly used in geotechnical analysis into a single
equation, including those of Tresca, Mohr-Coulomb and Matsuoka-Nakai. This makes for efficient im-
plementation of multiple criteria into finite element software, and in this paper two key improvements are made
to further enhance the usefulness of the GC yield function. The first is the development of a new expression for
the shape parameter γ , corresponding to the so-called ‘Inner Mohr-Coulomb’ option, which ensures that a true
inner rounding of the hexagonal Mohr-Coulomb deviatoric section is always obtained. The second is the in-
troduction of a hyperbolic rounding to eliminate a discontinuity which can occur at the tip in the meridional
section of the GC yield surface. The resulting yield surface is at least C2 continuous everywhere, provided a
rounded criterion is selected, and can thus be used in consistent tangent finite element formulations. The results
of finite element analyses carried out for two benchmark problems (a thick cylinder and a rigid strip footing)
demonstrate the benefits of the rounding techniques in the new yield surface. Comparisons are made with the
original yield surface and also the Hyperbolic Rounded Mohr-Coulomb (HRMC) yield surface originally devel-
oped by Abbo and Sloan (1995).

1. Introduction

A key component of an elastoplastic constitutive model of material
behaviour is the yield function, which defines the onset of plastic de-
formation for all possible stress paths imposed upon the material. When
implemented into finite element software it is preferable, particularly
with adaptive explicit stress integration schemes, that the yield function
be defined as a continuous and differentiable surface in 3D principal
stress space, such that its gradients can be evaluated at any point on the
surface. Often, many different yield functions will be implemented se-
parately and various rounding techniques will be used to eliminate any
discontinuities that arise. Recently, a new form of yield function (herein
referred to as the ‘Generalised Classical’ or GC yield function) has been
proposed by Lagioia and Panteghini [4]. This combines many of the so-
called ‘classical’ yield criteria, namely those of von Mises, Drucker-
Prager, Tresca, Mohr-Coulomb, Matsuoka-Nakai and Lade-Duncan, in a
single equation. This means that, instead of having to define multiple
criteria separately, the generalised equation can be implemented and
used for finite element analyses with any one of these criteria.

In this paper, two key improvements to the GC yield function are

introduced. The first is a new expression for the shape parameter γ for
the Inner Mohr-Coulomb option available within the yield function. The
use of this expression ensures that a true inner rounding of the hex-
agonal deviatoric section of the Mohr-Coulomb yield surface is ob-
tained, which lies inside the unrounded Mohr-Coulomb hexagon ev-
erywhere. The second improvement is a hyperbolic rounding of the tip
discontinuity which occurs at the junction between meridional sections
of the yield surface when using a frictional criterion, such as Mohr-
Coulomb. This ensures that there are no discontinuities left in the yield
surface. Together, the two improvements define a true inner rounding
of the Mohr-Coulomb yield surface, which is at least C2 continuous
everywhere.

The GC yield function is discussed with reference to the form that it
takes as a yield surface plotted in principal stress space. Yield surfaces
are often described using their form in the deviatoric plane, whose unit
normal points along the diagonal of principal stress space, and the
meridional plane, whose unit normal is perpendicular to the space di-
agonal. Additionally, instead of being defined in terms of the principal
stresses (σ σ σ, ,1 2 3) directly, the yield surface is often expressed using a
set of stress invariants (p J θ, , ) which are based on a separation of
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stresses into the meridional and deviatoric planes. These invariants are
written in terms of the usual Cartesian stress components
(σ σ σ τ τ τ, , , , ,x y z xy yz xz) as:
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The GC yield surface is now introduced as a function of the stress
invariants (p J θ, , ). Adopting the convention that compressive stresses
are positive, the yield surface may be expressed as:

= + =f F p J θ( ) Γ( ) 0 (4)

where
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is the magnitude of the slope of the meridional sec-
tion under triaxial compression conditions.
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is the J intercept of the meridional section
under triaxial compression conditions. This was mistakenly written
as =K c ϕcot in [4].

• α, β γ, are shape parameters whose values depend upon the chosen
classical criterion (von Mises, Drucker-Prager etc.) as well as the
value of ϕ. A complete listing of values is provided in Table 3 of [4],
and these are reproduced in Appendix A with the exception of γ for
the Inner Mohr-Coulomb option, where the newly-derived expres-
sion is now included (see Section 2).

• c and ϕ are the cohesion and friction angle respectively, which are
the usual strength parameters for a material modelled using one of
the classical yield criteria.

In addition to its ability to combine multiple, widely used yield
criteria under the one equation, the GC yield surface carries a number
of other features which render it superior to other yield surfaces:

• The shape parameter β, in addition to altering the shape of the
deviatoric section to suit various yield surfaces, also acts as a
rounding parameter for the Tresca and Mohr-Coulomb criteria
which have corner discontinuities in their deviatoric sections. By
choosing a value of β slightly less than 1, a Tresca or Mohr-Coulomb
yield surface with a rounded deviatoric section can be recovered,
which is especially useful for finite element applications.

• Aside from the tip discontinuity which occurs in the meridional
plane when using frictional criteria such as the Drucker-Prager or
Mohr-Coulomb models, the yield surface is at least C2 continuous
everywhere when β ≠ 1. This makes it suitable for use in finite
element formulations which adopt either explicit or implicit stress
integration schemes.

• The yield surface is convex everywhere for all criteria except the
Outer Mohr-Coulomb variant, where it is convex for most practical
choices of parameters.

• The meridional and deviatoric sections of the yield surface are

mathematically independent of each other, which makes it very easy
to alter their form as desired.

In this paper, a new expression will be derived for the shape para-
meter γ which corresponds to the Inner Mohr-Coulomb option of the GC
yield function. This new expression will result in a true inner rounding
of the Mohr-Coulomb hexagon in the deviatoric plane. A hyperbolic
approximation to the GC yield surface, known as the Hyperbolic
Generalised Classical (HGC) yield surface, will then be formulated. The
gradients and gradient derivatives to the GC and HGC yield surfaces,
which are necessary for their implementation in finite element codes,
will then be derived. Two subroutines (YIELD and GRAD), written in
the Fortran 77 programming language will then be introduced, to il-
lustrate how the yield surfaces may be incorporated efficiently in a fi-
nite element package. These subroutines have been implemented into
SNAC, a finite element program developed at the University of
Newcastle, Australia, and analyses have been carried out for two
benchmark problems (a thick cylinder and a rigid strip footing), the
results of which are presented herein.

2. New expression for γ corresponding to the Inner Mohr-Coulomb
criterion

Lagioia and Panteghini [4] noted that the Inner Mohr-Coulomb
option of the GC yield function does not strictly inscribe the hexagonal
deviatoric section of the unrounded Mohr-Coulomb criterion, and de-
monstrated this by way of their own finite element analyses. The extent
to which the rounded deviatoric section passes outside the unrounded
section is not significant if the value of β is very close to 1, and Lagioia
and Panteghini [4] suggested that choosing β =0.9999 leads to a very
close approximation of the unrounded section. However, as the results
of finite element analyses in Section 7 will show, even small reductions
in the value of β can place the rounded section a significant distance
outside the unrounded section, leading to unconservative estimates of
collapse loads in practical problems.

It can be shown that, by deriving an alternative expression for the
shape parameter γ , a true inner rounding of the Mohr-Coulomb de-
viatoric section can be achieved. The original expression for γ used in
[4] for the Inner Mohr-Coulomb option is:

= −γ γ1 (5)
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This expression for γ works when using the unrounded Mohr-Coulomb
option (i.e. β =1), and indeed should be recoverable from any pro-
posed new expression for γ where the Inner Mohr-Coulomb option is
selected. Following the derivation outlined in Appendix B, an appro-
priate expression for γ corresponding to the Inner Mohr-Coulomb op-
tion is found to be:
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If β is set to 1 then Eq. (6) reduces to Eq. (5) as required, and so Eq. (6)
may be used to furnish a true inner rounding of the Mohr-Coulomb
deviatoric section, where β is set to a value less than 1.

3. Formulation of hyperbolic yield surface

A ‘tip’ discontinuity between the meridional sections of the GC yield
surface exists when a frictional criterion such as Mohr-Coulomb is used,
and this scenario is depicted in Fig. 1. Whilst any ‘corner’ dis-
continuities in the deviatoric plane can be eliminated by choosing an
appropriate value of the shape parameter β, the yield surface as written
in Eq. (4) does not allow for any rounding in the meridional plane. This
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