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a  b  s  t  r  a  c  t

This paper  motivates  and  interprets  entropy  centrality,  the  measure  understood  as  the entropy  of  flow
destination  in  a network.  The  paper  defines  a variation  of this  measure  based  on  a  discrete,  random
Markovian  transfer  process  and  showcases  its  increased  utility  over  the  originally  introduced  path-based
network  entropy  centrality.  The  re-defined  entropy  centrality  allows  for  varying  locality  in centrality
analyses,  thereby  distinguishing  locally  central  and globally  central  network  nodes.  It  also  leads  to  a
flexible  and  efficient  iterative  community  detection  method.  Computational  experiments  for  clustering
problems  with  known  ground  truth  showcase  the effectiveness  of  the  presented  approach.
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1. Introduction

Despite the abundance of existing methods for measuring
centrality in social networks, new research challenges and opportu-
nities continue to emerge. In application to large network datasets,
computational efficiency of evaluation becomes a major indica-
tor of utility of centrality measures. Even more importantly, the
typically reliable path-based measures lose sensitivity when the
number of paths contributing to their formulae grows too large,
making the evaluation of node centrality with respect to nearby
neighbors (as opposed to the whole network) particularly difficult.
In searching for answers to new challenges, it is desirable to design
centrality measures with solid grounding in theory, while not com-
promising interpretability sought by social science practitioners.

This paper develops a centrality measure whose computation
for a given node does not require dyad-based path enumeration.
Instead, the presented measure relies on an absorbing Marko-
vian process evolving over finite time – this allows for matrix
multiplication-based computation of centrality. Depending on the
absorption rate and evolution time, the presented measure enables
centrality analysis at varying localities around a node of interest,
thereby distinguishing locally central and globally central network
nodes. The measure offers an information theory-based approach
to measuring centrality, and takes a particular, previously unoccu-
pied spot in the typology of flow-based centrality metrics.
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Different measures of centrality capture different aspects of
what it means for a node to be “central” to the network. In his
seminal paper, Freeman (1979) argued that node degree central-
ity, the number of direct links incident to a node, indexes the
node’s activity; node betweenness centrality, based on the posi-
tion of a node with respect to the all-pair shortest paths in a
network, exhibits the node’s potential for network control; and
closeness centrality, the sum of geodesic distances from a node
to all the other nodes, reflects its communication independence
or efficiency. Borgatti (2005) conceptualized a typology of cen-
trality measures based on the ways that traffic flows through
the network. Two  characteristics – the route the traffic follows
(geodesics, paths, trails, or walks) and the method of propaga-
tion (parallel duplication, serial duplication, or transfer) – define
the two-dimensional typology. Each measure of centrality makes
assumptions about the importance of the various types of traf-
fic flow, and hence, each measure of centrality can be assessed
by where it falls in the typology. For example, betweenness cen-
trality is perfect for networks featuring flows along geodesics.
A node with high betweenness centrality is essentially a traffic
checkpoint that can shut down the flow. At the same time, between-
ness is an inappropriate measure in networks where flow is not
constrained to follow geodesics. Non-geodesic paths avoid the
checkpoints altogether, making an alternative measure essential.
Over the years, researchers have proposed a number of different
centrality measures, including eigenvector centrality (Bonacich,
1972), information centrality (Stephenson and Zelen, 1989), sub-
graph centrality (Estrada and Rodriguez-Velazquez, 2005), alpha
centrality (Bonacich and Lloyd, 2001), etc. However, their meaning
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with respect to Borgatti’s typology have not always been clearly
defined or analyzed.

Tutzauer (2007) began to address this issue and proposed a cen-
trality measure for networks characterized by path-based transfer
flows. The path-based transfer model assumes that an object travels
from a particular node (the one whose centrality is being evalu-
ated) to a destination (the node itself or one of its neighbors) along
a random path. More specifically, a path is sequentially built: if
the flow originating node is randomly selected to be the next in
the sequence, then the flow is over before it begins; otherwise, the
object is randomly passed to one of the original node’s immediate
neighbors. Given that the object has arrived to the new node, the
next transfer step destination is then randomly chosen from among
its neighbors (including the current node, but not including any of
the previously visited nodes), and again the flow either stops (if
the current node in the sequence is selected) or continues on in
the same fashion (if a different node is selected). For the described
transfer model, the centrality of a given node can be defined as the
entropy of the transfer’s final destination. In other words, it can be
expressed via the probabilities of transfer paths from the node to
each of the other nodes. Despite the fact that the motivation for
this entropy-based measure is intuitively and technically clear, the
research community has been slow to adopt it for application pur-
poses, largely due to the need for exhaustive path enumeration in
evaluating the defined centrality.

This paper develops the idea of Tutzauer (2007), and presents
a new, high-utility entropy centrality measure based on a discrete
Markovian transfer process. In the presented model, a transferred
object randomly walks through a network; then, the resulting mea-
sure – the walk destination entropy – can be efficiently computed,
which opens new ways for insightful, computationally efficient
analyses of networks. The structure of the paper is as follows.
Section 2 introduces essential notation and the fundamentals of
path-transfer flow process, builds a Markov model for the study
of this process, presents an expression for the entropy centrality
measure, and offers an illustrative computational example. Sec-
tion 3 uses entropy centrality to design an algorithm for community
detection in networks, and reports computational results with the
algorithm applied to clustering problems with known ground truth.
Section 4 offers discussion and concluding remarks.

2. Model description

2.1. Mathematical preliminaries

The mathematical representation of a network is a directed
or undirected graph G = (V, E), where V = {1, 2, . . .,  N} is a finite,
nonempty set of nodes (vertices), and E is a relation (a tie configu-
ration) on V. The elements of E are called edges. The edge (i, j) ∈ E is
incident with the vertices i and j, and i and j are incident with the
edge (i, j) ∈ E. Moreover, (i, j) ∈ E is a link if i /= j and a loop if i = j.
The incidence matrix of G has elements (bij), i = 1, 2, . . .,  N, j = 1, 2,
. . .,  N such that bij = 1 if nodes i and j in the network are connected
with an edge and 0 otherwise.

2.2. Centrality and entropy connection

To motivate the connection between the centrality of a given
node and the concept of entropy, consider a network of friends
transferring an object among themselves. The more central the
original node is, the more difficult it is to predict the object’s final
destination. If the node is central, the object has a greater proba-
bility of traveling far in multiple potential directions. In contrast,
a less central node has a more limited choice of immediate trans-
fer options and the process is more likely to stop (be absorbed)

before the number of transfer options increases, which makes its
destination more predictable.

This idea can be more easily understood if one considers an
extreme example of a network of one extrovert person and many
introverts. An introvert is a node in the network with no or very few
incident links, while an extrovert is a node adjacent to many nodes
in the network. Assume that, according to a random rule, an object
transfer process can terminate after the object is passed from one
node to another, i.e., the object will eventually be absorbed by some
node, termed destination node. In the case of high absorption prob-
abilities, if the object transfer process originates from the extrovert
(following the transfer process described above), the probability
that it ends up at any given node is close to 1/N. In contrast, if the
transfer process originates from the introvert, then the flow first
needs to reach the hub to go beyond it, limiting the likelihood that
“far-away” nodes are reached at all.

The level of uncertainty of object destination, as a function of
its origin, can be captured as destination entropy. The concept of
entropy was  first introduced in physics, and later, developed in
information and communication sciences; entropy enjoys distinct
and intuitive interpretations in multiple applied domains. In adopt-
ing it for the use in social network analysis, one avoids having to
assess a node’s position with respect to paths connecting all node
pairs, and instead, focuses on the node’s potential to diversify flow
propagation.

2.3. Path transfer and random walk flows as foundations for
entropy centrality computation

In assessing the value of node position using network flow,
researchers have historically focused on paths as channels that flow
may  follow. Entropy centrality does not explicitly measure the abil-
ity of a node to interfere with path-based exchanges between other
nodes; instead, it views a node of interest as flow originator.

The treatment of paths and flow types, relevant to the concept
of entropy centrality, deserves a more in-depth discussion. This
paper’s contribution to centrality theory is akin to that of Newman
(2005), who  first proposed to use walks, instead of only short-
est paths, for betweenness measurement. In entropy centrality
calculation, the idea of analyzing random walks is further devel-
oped, by allowing walks to be randomly interrupted; the longer a
given planned object route, i.e., the more exchanges (transfers) it
requires, the less likely it is to be completed. To further illustrate
this point, a review and discussion of path-transfer flows is in order.

Examples of path-transfer flows are aplenty among trading and
smuggling networks (Tutzauer, 2007), especially when the traded
or smuggled commodity is discrete such as the case of exotic ani-
mals, nuclear weapons material and parts, fossils, artworks and
antiquities, and even trafficking humans. For a more peaceful exam-
ple, consider a group of people linked by friendship ties, with one
of them having a specific object. To model a path-transfer pro-
cess, think of the object being passed from one person to another.
The flow (i.e., object transfer) originates at a particular person in
the group (i.e., a node in the graph). If that person does not pass
the object to any one of their immediate friends, the flow is over
before it begins; otherwise, the object flows (i.e., is transferred) to a
randomly selected person. The next person then chooses whether
to pass the object to their immediate friends, and again the flow
either stops or continues. The object thus traverses a path in the
network, traveling along the links, stopping when the process is
absorbed at some node or if the object’s trajectory completes a loop.
According to the original model formulation, each of the eligible
neighbors is assumed to be selected with equal likelihood, although
this assumption can be relaxed without loss of generality. The main
restriction in the path-transfer process is that the object cannot be
passed to the nodes it has already visited.
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