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a  b  s  t  r  a  c  t

Recent  developments  have  made  model-based  imputation  of  network  data  feasible  in principle,  but  the
extant  literature  provides  few  practical  examples  of  its use.  In this  paper,  we  consider  14  schools  from  the
widely  used  In-School  Survey  of  Add  Health  (Harris  et  al.,  2009),  applying  an  ERGM-based  estimation  and
simulation  approach  to impute  the  network  missing  data  for each  school.  Add  Health’s  complex  study
design  leads  to multiple  types  of  missingness,  and  we  introduce  practical  techniques  for handing  each.
We  also  develop  a cross-validation  based  method  – Held-Out  Predictive  Evaluation  (HOPE)  –  for  assessing
this  approach.  Our results  suggest  that  ERGM-based  imputation  of edge  variables  is  a  viable  approach
to  the  analysis  of  complex  studies  such  as Add Health,  provided  that  care  is used  in understanding  and
accounting  for the study  design.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Missing edge variable data – i.e. edge variables in an observed
network whose states are unknown – has long been recognized to
be a serious problem for social network analysis (Burt, 1987). Net-
work analytic concepts and measures are generally defined with
respect to a completely observed graph (Wasserman and Faust,
1994) and the non-extensive nature of many network proper-
ties makes them difficult or impossible to estimate by e.g. simply
averaging observed local network information. While ad-hoc meth-
ods such as treating missing edges as absent, dropping vertices
with missing edge information, etc. have been employed, these
can produce misleading or incorrect estimates (see Ghani et al.,
1998; Huisman and Snijders, 2003; Kossinets, 2006; Huisman and
Steglich, 2008; Huisman, 2009; Almquist, 2012); methods for han-
dling missingness from one source by integrating measurements
from other sources (e.g. Butts, 2003) can work well, but require data
unavailable to most network researchers. Unfortunately, missing-
ness is sometimes impossible to avoid, or arises from flaws in study
design that are unrecognized until after data collection. Given the
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importance and scope of this problem, finding practical and princi-
pled ways to deal with it has been an important priority in network
research.

A significant development in this regard has been the emer-
gence of techniques for fitting exponential family random graph
models (ERGMs) in the presence of missing data. The core insight
(introduced by Handcock in 2002) is that the latent missing data
framework developed by Rubin (1976) in a non-network con-
text can also be applied to edge variables: given a parametric
model, and appropriate assumptions regarding the nature of miss-
ingness, one can derive the likelihood of the observed data as a
marginalization of the complete-data likelihood over the possible
states of the missing variables (in some cases weighted by a factor
related to the probability of the observed pattern of missingness).
Techniques for performing maximum likelihood estimation (MLE)
under these conditions (and theory regarding the nature of the
assumptions required) have been developed by Robins et al. (2004)
and Handcock and Gile (2010), with recent Bayesian extensions by
Koskinen et al. (2010, 2013).

The current state of the art may  be briefly summarized as fol-
lows. First, it is usually assumed that the pattern of missingness is
ignorable (i.e., that any unknown parameters governing the obser-
vation process are distinct from those being estimated, and the
probability of the pattern of missingness depends only on the val-
ues of the observed data and/or covariates). Ignorability can in some
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cases be relaxed (albeit not without altering the likelihood calcula-
tion), but is satisfied exactly or approximately for many real-world
designs [see, e.g., Handcock and Gile (2010) for a discussion]. Sec-
ond, a model is posited for the graph as a whole (here, a parametric
model in ERGM form). Finally, the likelihood for a given parame-
ter vector is then calculated by marginalizing the ERGM likelihood
for the full network over all possible complete networks that are
compatible with the observed data. This observed data likelihood
is then employed for purposes of inference.

Although the emphasis of these techniques is on ERGM infer-
ence, it is clear that they also provide an approach to the more
general problem of network imputation: given an adjacency matrix
Y with realization y of which portion yobs is observed and ymis

is missing, ymis can be modeled via conditional prediction from
an ERGM fit to yobs. Specifically, let �’ be an estimate (e.g., an
MLE) for the parameter vector of an ERGM with sufficient statis-
tic t given data yobs. Then we generate draws Ymis ∼ ERGM(�’|yobs),
where ERGM(�’|z) denotes the ERGM distribution with statistic t
and parameter � conditional on z (i.e., with the elements of Y con-
tained in z held fixed). Such draws may  be taken using standard
Markov chain Monte Carlo (MCMC) methods (see Snijders, 2002;
Snijders et al., 2006; Wasserman and Robins, 2005), and indeed
simulations of this sort are used as part of the latent missing data
estimation process described above. Draws from Ymis can then be
used to estimate various features of ymis (the true missing data) or
y = yobs∪ymis (the true state of the graph).

While the basic logic of ERGM-based network imputation is
straightforward, there are to date few published use cases (to our
knowledge, e.g., Handcock and Gile, 2010; Koskinen et al., 2010,
2013). Likewise, the existing literature gives little guidance on
assessing the quality of network imputation (an important practical
consideration in everyday use). In this paper, we attempt to rectify
this latter deficit by introducing a simple cross-validation based
method – what we term Held-Out Predictive Evaluation (HOPE) –
to assess the accuracy of imputed draws from an observed-data
ERGM.

We apply the ERGM-based network imputation method to
model the missingness and error inherent in the Add Health data set
(Harris et al., 2009). This provides for a useful demonstration given
that this is a widely used study in the literature, and that it has a
high level of missingness making it a very complex and challenging
case. The Add Health case is also useful for demonstrating the use of
multiple sources of information (particularly, marginal constraints
on degree and group-specific mixing) in aiding estimation (some-
thing not explored in most published work to date). For our study,
we use the friendship networks from 14 schools in the saturated
sample of Add Health. As we are using a real-world data set (rather
than simulated data), our focus is on technique illustration rather
than method evaluation per se; however, as we will demonstrate,
one feature of our approach is that it provides some basis for eval-
uation on available data. As we show, ERGM-based imputation can
produce reasonable results in a real-world setting (although careful
attention must be paid to the complexities of one’s study design).

As a complement to the above-mentioned methods of imputa-
tion, we introduce a simple strategy we call Held-Out Predictive
Evaluation (HOPE) for evaluating the quality of imputation in real-
world settings. As discussed below, HOPE involves holding out a
stratified sample of edge variables from the graph prior to model
estimation and imputation, and using the predictive accuracy of
the model on the imputed data as an indicator of imputation qual-
ity. It is worth emphasizing that the HOPE method sets a relatively
high bar for accuracy, compared to common methods of assessing
the latent missing data imputation framework developed by Rubin
(1976) outside of the network context. In that context, the typical
approach for assessing the quality of imputation is to assess how
well the estimated parameters for the imputed data compare to the

true parameters. Thus, the question posed is whether the imputed
data are able to accurately capture the proper coefficients for a
specific model. By contrast, HOPE directly assesses the ability of
an imputation model to correctly identify present and absent edges
in the (unknown) true network. This tough but general standard
is useful when imputation is being performed without knowledge
of what analyses will need to be subsequently conducted on the
resulting graph (e.g., when the imputed draws will be shared with
other researchers, or at the early stages of a multi-stage investiga-
tion), and/or when the same imputed draws will be used for several
different purposes (rendering any single model-based evaluation
problematic). HOPE may  also be useful as an easily interpretable
adjunct to other quality measures, and can serve as the basis for a
wider range of predictive evaluation measures employing specific
graph properties.1

2. Data source, multiple types of network data missingness,
and treatments

2.1. Data source

Our data comes from the first wave of the National Longitudinal
Study of Adolescent to Adult Health (Add Health), a longitudinal
study of a stratified sample of US schools from 7th to 12th grades
(see Harris et al., 2009). (A “school” in this case consists of a high
school, in some cases united with a “feeder” school whose students
ultimately attend it. We  use the singular “school” to refer to such
high school/feeder school pairs.) All participants were invited to
take the In-School Survey (n = 90,118) during 1994 and 1995. A
random sample of 20,745 students selected from the In-School Sur-
vey respondents completed a wave 1 In-Home Survey, which was
administered between April and December, 1995. Approximately
one year later, participants who  had not yet graduated from high
school were asked to take a Wave 2 In-Home Survey (n = 14,738)
between April and December, 1996. Information on social and
demographic characteristics (i.e., gender and grade) of the respon-
dents, attending classes and grades, extracurricular activities (i.e.,
club and sport-team participation), education and occupation of
parents, household structure, risk behaviors including tobacco and
alcohol use, expectations for the future, self-esteem, and health sta-
tus were collected. Each student was also asked to nominate up to
five best female friends and five best male friends.2 In this paper
we focus on the saturated sample of 4431 students collected from
14 out of 132 participating schools.3 As shown in Table 1, the roster
size of our 14 schools range from 30 to 2104.

1 For example, a variant of the HOPE technique could be used to assess the ability
to  reproduce structurally selected subsets of edge variables (e.g., those known to be
embedded in two-paths), rather than randomly selected edge variables.

2 The friendship network dataset from Add Health has considerable complexity.
Respondents (egos) were asked to nominate friends (alters) by entering numbers
from a roster listing students at the school (and, in some cases, a feeder school
with which it was  paired). Because of enrollment changes, some students were not
listed on the roster; these “off-rosters̈tudents could participate (and hence their
outgoing ties are observed) but could not be uniquely identified as alters by other
participants. “Off-rosterälters are identified in the data by a generic code, and hence
only  the total number of ties to such persons (by gender) is observable. Further, the
nominees were not limited to participants in the sample: respondents could also
nominate persons outside the school. Ties to those outside the school are likewise
identified by a generic code, and only the number of such alters (by gender) for
each observed ego is known. (Since the survey was administered only to students
within the sampled schools, incoming nominations from those outside the school
are unobserved.)

3 Add Health contains a saturated sample of 16 schools (Harris et al., 2009). Among
the  16 schools, there is a special education school with constant student turnover,
and another school suffering from an administrative error in which the students’
IDs at the earlier wave could not be matched with those at later waves. Thus these
two  schools are not included in this paper.
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