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a  b  s  t  r  a  c  t

The  analysis  and  visualization  of weighted  networks  pose  many  challenges,  which  have  led to  the  devel-
opment  of  techniques  for extracting  the  network’s  backbone,  a subgraph  composed  of only  the  most
significant  edges.  Weighted  edges  are  particularly  common  in bipartite  projections  (e.g.  networks  of  co-
authorship,  co-attendance,  co-sponsorship),  which  are  often  used  as proxies  for  one-mode  networks
where  direct  measurement  is impractical  or impossible  (e.g.  networks  of  collaboration,  friendship,
alliance).  However,  extracting  the  backbone  of  bipartite  projections  requires  special  care.  This  paper
reviews  existing  methods  for extracting  the  backbone  from  bipartite  projections,  and  proposes  a  new
method  that  aims  to overcome  their  limitations.  The  stochastic  degree  sequence  model  (SDSM) involves
the  construction  of  empirical  edge  weight  distributions  from  random  bipartite  networks  with  stochastic
marginals,  and  is demonstrated  using  data  on  bill sponsorship  in  the  108th  U.S.  Senate.  The  extracted
backbone’s  validity  as  a network  reflecting  political  alliances  and antagonisms  is  established  through
comparisons  with data  on  political  party  affiliations  and  political  ideologies,  which  offer  an  empirical
ground-truth.  The  projection  and  backbone  extraction  methods  discussed  in  this  paper  can  be  performed
using  the  -onemode-  command  in Stata.
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1. Introduction

Analyzing and visualizing weighted networks presents a num-
ber of challenges, which has lead to the development of methods
for extracting the ‘backbone’ of these networks. Such backbone
extraction methods aim to reduce the original, weighted network
into a simpler, binary network that preserves only those edges
whose weights are sufficiently large to suggest they are signif-
icant. The challenge lies in determining how strong an edge’s
weight must be before deeming it significant. Several techniques
for assessing a edge’s significance and thus achieving this reduc-
tion have been proposed, ranging from relatively simple methods
like an unconditional threshold that retains the strongest edges to
more sophisticated methods that compare observed edge weights
to expectations from a null model (Serrano et al., 2009) or to empir-
ical distributions (Foti et al., 2011).

Weighted networks arise in many different contexts, but are
particularly common in the case of bipartite network projections,
including networks where authors are linked by the number of
papers they have co-authored (e.g. de Stefano et al., 2013) or actors
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are linked by the number of movies they have both appeared in
(e.g. Watts and Strogatz, 1998). However, the backbone extrac-
tion methods developed for natively one-mode networks are not
well suited for one-mode networks that have been obtained from
bipartite data via projection. Such methods fail to incorporate infor-
mation present in the original bipartite data into their decisions
about whether a given edge should be preserved in the backbone
network. Several alternative backbone extraction methods have
been developed specifically for bipartite projections (e.g. Zweig
and Kaufmann, 2011; Neal, 2013), but they are computationally
complex and risk imposing too many or too few assumptions. The
purpose of this paper is to review the existing methods for extract-
ing the backbone from bipartite projections, then to propose and
demonstrate a new method that aims to overcome some of the
existing methods’ limitations.

After defining bipartite networks and some key features of their
projections, I briefly review the most commonly used methods
for extracting the backbone of bipartite projections, noting their
strengths and weaknesses. I then describe a new method – the
stochastic degree sequence model (SDSM) – that involves building
empirical probability distributions using a sample of random bipar-
tite networks with stochastic row and column degree sequences.
In Section 5, I provide a step-by-step demonstration of this method
using data on bill sponsorship activities in the 108th U.S. Senate
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to infer political alliances and antagonisms among senators. In
this context, the SDSM involves asking whether two  senators
co-sponsored significantly more bills (suggesting an alliance)
or significantly fewer bills (suggesting an antagonism) than they
might have co-sponsored in plausible alternate worlds in which the
senators randomly sponsored roughly the same number of bills and
the bills were randomly sponsored by roughly the same number
of senators. It yields a backbone network of political alliances and
antagonisms that exhibits a high level of criterion validity when
compared to expectations based on political party and ideology
data, which offer an empirical ground-truth. The paper concludes
with a discussion of the proposed method’s limitations and direc-
tions for future research on the analysis of bipartite projections.

2. Bipartite networks and projections

A bipartite network is composed of two mutually exclusive sets
of nodes; edges may  exist between nodes in different sets, but
not between nodes in the same set. Also known as two-mode
or affiliation networks, bipartite networks have been discussed
in many different contexts including southern women attending
social events (Davis et al., 1941), individuals sitting on corporate
boards (Mizruchi, 1996), actors appearing in movies (Watts and
Strogatz, 1998), world cities hosting branches of multinational
firms (Taylor, 2001), supreme court justices joining majority opin-
ions (Doreian et al., 2004), legislators sponsoring bills (Fowler,
2006a), and ingredients possessing flavor compounds (Ahn et al.,
2011). Formally defined, an m-by-n  bipartite network, B, in which
Bik = 1 if there is an edge between i and k and otherwise is zero, can
be projected onto an m-by-m unipartite or one-mode network, P,
as BB′ (Breiger, 1974). Using this approach, for example, a bipartite
network that describes legislators’ sponsorship of bills is trans-
formed into a unipartite or one-mode network of legislators linked
to one another by their co-sponsorship of bills.

To facilitate a discussion of bipartite projections, some generic
terminology is useful. Throughout this paper, I use the terms agent
and artifact to describe the two sets of nodes in a bipartite network.
Agents are represented as rows in B and are the primary nodes of
interest. An agent’s degree is the row marginal of B, and indicates
an agent’s total number of artifacts, for example, how many social
events (the artifacts) a given person (an agent) attended or how
many bills (the artifacts) a given legislator (an agent) sponsored.
Artifacts are represented as columns in B and are instrumental in
forging the linkages between agents in P, but are not of direct inter-
est in the bipartite projection. An artifact’s degree is the column
marginal of B, and indicates an artifact’s total number of agents,
for example, how many people (the agents) attended a given social
event (an artifact) or how many legislators (the agents) sponsored
a given bill (an artifact).

Much has already been written about the mathematical prop-
erties of bipartite projections (see Latapy et al., 2008), however
the nature of edge weights in bipartite projections is of particular
concern in the methods discussed below, and thus warrants brief
consideration. The weight of an edge in the projection, Pij, reflects
the number of artifacts that agents i and j have in common (e.g. the
number of bills two legislators both sponsored). Some have argued
that bipartite projections are easier to analyze than the original
bipartite network because they are one-mode networks, noting
that “there is no need to develop any new techniques to analyze
[bipartite projections]. . .for which the full range of network ana-
lytic methods are available” (Borgatti and Everett, 1997, p. 246).
However, because bipartite projections are nearly always weighted
networks, their analysis is not as straightforward as this claim
implies. Projecting a bipartite network into a one-mode network
merely “transforms the problem of analysing a bipartite structure

into the problem of analysing a weighted one, which is not easier”
(Latapy et al., 2008, pp. 34–35). One important but rarely noted
feature of these edge weights is their constrained range of possi-
ble values. The range of values an edge between agents i and j may
take in a bipartite projection can be expressed as a function of these
agents’ degrees (i.e. Di and Dj) and the total number of artifacts (A):

min(Di, Dj) − (A − max(Di, Dj)) ≤ Pij ≤ min(Di, Dj) (1)

A simple example serves to illustrate. Suppose Tom attends 5 of 10
parties, and Jerry attends 7 of the same 10 parties. From Eq. (1), we
know that Tom and Jerry must have co-attended at least 2 parties,
and could not have co-attended more than 5 parties. A critical impli-
cation of this identity is that, ceteris paribus, higher-degree agents
will necessarily have stronger edges than lower-degree agents.

Before turning to methods for dealing with these edge weights, it
is also useful to consider why one would examine a bipartite projec-
tion at all. Indeed, the projection transformation involves the loss of
information including the specific identity of the artifacts respon-
sible for forging linkages between agents (Latapy et al., 2008), and
methods are emerging for analyzing bipartite networks without
requiring their projection (Borgatti and Everett, 1997; Agneessens
and Everett, 2013). Nonetheless, bipartite projections remain an
important methodological tool in research where the interest is in
a natively one-mode network, but where measurement of this net-
work is impossible or impractical. In developmental psychology
research on peer relationships among youth, high non-response
rates and challenges associated with obtaining parental permission
required by Institutional Review Boards make the direct collection
of one-mode social network data is difficult. As a solution, a method
known in this literature as Social Cognitive Mapping uses bipartite
projections in which children are linked by their co-participation
in social groups to infer the unobserved social network of interest
(e.g. Cairns and Cairns, 1994; Gest et al., 2007; Neal and Neal, 2013).
Similarly, in political science research on relationships of political
alliance and influence, politicians’ compelling strategic reasons for
wanting to conceal their alliances makes direct collection of such
data impossible. As a solution, some have turned to bipartite projec-
tions reflecting bill co-sponsorship or committee co-membership
to infer the unobserved social network of interest (e.g. Porter et al.,
2005; Fowler, 2006a). Finally, in geography research on global eco-
nomic relations between cities, although some types of data exist
on trade and foreign direct investment between countries, no such
data exists at the city level. As a solution, a method known in
this literature as the Interlocking World City Network Model uses
bipartite projections in which cities are linked by the co-location
of branches of advanced producer service firms (e.g. institutional
banks, law firms, accounting agencies, etc.) to infer the unobserved
economic network of interest (e.g. Taylor, 2001; Neal, 2008). In each
case, a bipartite projection is used as a proxy to infer an unobserved,
natively one-mode network of interest. When used as a proxy mea-
surement tool, the methods for handling edge weights in bipartite
projections must permit such inferences to be made in a principled
way.

3. Existing methods for backbone extraction

All methods of network backbone extraction, whether applied
to natively one-mode networks or to bipartite projections, involve
the use of a threshold. Edges whose weights exceed the threshold
value are retained in the backbone, while those whose weights are
below the threshold value are omitted from the backbone. Back-
bone extraction methods vary, however, in how threshold values
are identified. In this section, I review three broad approaches that
can be distinguished by the information on which the selection of
threshold values is conditioned. Table 1 summarizes examples of
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