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a  b  s  t  r  a  c  t

Clique  relaxations  are  used  in  classical  models  of  cohesive  subgroups  in social  network  analysis.  Clustering
coefficient  was  introduced  more  recently  as a structural  feature  characterizing  small-world  networks.
Noting  that  cohesive  subgroups  tend  to  have  high  clustering  coefficients,  this  paper  introduces  a new
clique  relaxation,  ˛-cluster,  defined  by enforcing  a  lower  bound  ˛ on  the  clustering  coefficient  in the  cor-
responding  induced  subgraph.  Two  variations  of  the clustering  coefficient  are  considered,  namely,  the
local  and  global  clustering  coefficient.  Certain  structural  properties  of ˛-clusters  are  analyzed  and  math-
ematical  optimization  models  for determining  ˛-clusters  of  the  largest  size  in  a network  are  developed
and  validated  using  several  real-life  social  networks.  In  addition,  a network  clustering  algorithm  based
on local  ˛-clusters  is proposed  and  successfully  tested.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Social interactions have been becoming increasingly observable
and measurable with advancements in technology. Interactions
using online social media platforms, mobile phones and email are
commonly represented as graphs, whose structural analysis may
reveal interesting insights about the underlying social networks.
For example, community detection techniques have been exten-
sively used to identify groups of people characterized by a high level
of interactions and to understand social communication through-
out the network by finding cohesive subgroups (Scott, 2000; Falzon,
2000; Fortunato, 2010; Schaeffer, 2007).

A cohesive subgroup is a “tightly knit” subset of actors in a
social network, which was originally modeled using the graph-
theoretic concept of a clique (Luce and Perry, 1949). The notion of
a clique embodies a perfect cohesive group, it compels every two
individuals in the subgroup to be directly connected to each other.
However, requiring every possible pairwise connection between
the individuals in a subgroup is often overly restrictive from a
practical perspective, as doing so yields only “perfectly cohesive”
clusters while ignoring other important cohesive subgroups. In
addition, clique-detection algorithms may  fail to identify cliques
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in which a few edges are absent due to imprecisions in collecting
the data. To overcome these issues, clique relaxation models have
been introduced, including the k-clique (Luce, 1950), relaxing direct
interaction between individuals; the k-club (Alba, 1973; Mokken,
1979), relaxing reachability; the k-plex (Seidman and Foster, 1978),
allowing at most k non-neighbors; and s-defective clique (Yu et al.,
2006), allowing at most s missing edges. Clique relaxation mod-
els have been extensively used in social network analysis (Pattillo
et al., 2012; Nastos and Gao, 2013; Scott, 2000; Wasserman and
Faust, 1994).

This paper proposes a novel clique relaxation based on the
notion of clustering coefficient.  This concept gained popularity in the
study of the so-called small-world networks (Watts, 1999; Watts and
Strogatz, 1998), where it is used to model the hypothesis that two
people are more likely to be friends if they have a friend in common.
For a given actor (node) with more than one friend (neighbor), its
local clustering coefficient measures the local density of direct con-
nections between its friends. Clustering coefficient is equal to one
when the node’s neighborhood is fully connected (forms a clique).
On the other hand, a close to zero clustering coefficient means that
there are hardly any connections in the neighborhood. Many real-
life networks have been empirically found to have many nodes
with rather high clustering coefficients (Newman, 2003), which
also appears to be a natural property to expect of cohesive sub-
groups in social networks. In fact, according to (Jackson, 2008, p.
35), clustering coefficient is “the most common way of measuring
some aspect of cliquishness.”
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Hence, it is reasonable to define a cohesive subgroup by requir-
ing that the corresponding subset of nodes induces a connected
subgraph with a desired (high) clustering coefficient ˛. We  will
refer to such a structure as an ˛-cluster. If  ̨ = 1, the connectivity
requirement ensures that an ˛-cluster is a clique. Otherwise, if  ̨ < 1,
an ˛-cluster can be viewed as a clique relaxation.

Our study focuses on computing ˛-clusters of the largest size
in social networks, which is of interest for several reasons. Larger
cohesive subgroups tend to have more influence on the overall net-
work structure than their smaller counterparts. In fact, the largest
size of a cohesive subgroup of a certain kind can be thought of as
a global measure of cohesiveness of the whole network with respect
to the imposed definition of cohesiveness. The presence of large
cohesive subgroups consisting of considerable portions of a net-
work implies a high level of cohesion in the network, whereas their
absence indicates the opposite. Nevertheless, smaller cohesive sub-
groups may  also be of interest, and the approaches proposed in this
work can be easily modified to compute all ˛-clusters of a given
size by introducing the corresponding constraints in the considered
optimization models.

Dropping the connectivity requirement from the ˛-cluster
definition may  result in a structure with multiple connected com-
ponents, each of which is a connected ˛-cluster. This motivates a
novel clustering algorithm, which uses the multiple connected ˛-
clusters as the “seeds,” with the remaining nodes assigned to these
seed clusters using a certain strategy. The algorithm yields encour-
aging results on the social networks used in our experiments.

The remainder of this paper is organized as follows. In the next
section, we introduce the necessary definitions and study some
basic structural properties of ˛-clusters. Section 3 provides opti-
mization models for finding the largest ˛-clusters in a network. In
Section 4, the proposed models are used to analyze several well-
known social networks. The proposed local ˛-clustering algorithm
is outlined and tested in Section 5. The paper concludes with a
summary of findings and suggestions for future research in Section
6.

2. Definitions and properties

This section presents basic graph-theoretic definitions and nota-
tions used throughout the paper. Let G = (V, E) be a simple graph
with set V of n vertices (nodes) and set E of edges (links), E ⊂ {{i,
j} : i, j ∈ V}. Let NG(i) and dG(i) denote the neighborhood and degree
of i in G, respectively, and let AG be the adjacency matrix of G. The
distance between vertices i and j in G is denoted dG(i, j); dG(i, j) =∞
if i and j are not connected. The diameter of G is denoted diam(G).
Given a subset V′ ⊂ V, the corresponding induced subgraph G[V′]
is defined as G[V′] = (V′, E′), where E′ is the subset of edges of G
connecting pairs of vertices from V′.

Watts and Strogatz (1998) define the local clustering coefficient
for a node of degree at least 2 as the proportion of links between
the vertices within its neighborhood divided by the number of
links that could possibly exist between the neighbors. The following
notations will be used in the definitions below:

Di =
(

dG(i)

2

)
and D  =

∑
i ∈ V

Di.

Definition 1 (Local clustering coefficient). The local clustering coef-
ficient Ci of node i of degree dG(i) ≥ 2 in G is given by

Ci = 1
Di

∑
j,k ∈ NG(i),j<k

ajk. (1)

The global clustering coefficient C of G can be thought of as
the proportion of triangles among the triplets, where a triplet is

Fig. 1. Addition of an edge decreases global clustering coefficient.

defined as an ordered subset of three vertices that induces a sub-
graph with at least two  edges. It can be expressed mathematically as
follows.

Definition 2 (Global clustering coefficient).  The global clustering
coefficient C of graph G that has at least one connected component
with more than 2 vertices is given by

C = 1
D
∑
i ∈ V

∑
j,k ∈ NG(i),j<k

ajk. (2)

It is interesting to note that both local and global clus-
tering coefficients of a graph can decrease with an increase
in edge density. Indeed, Fig. 1 shows a graph where adding
an edge between nodes 3 and 5 decreases the cluster-
ing coefficients. Before the dashed edge is added, local
clustering coefficients of the corresponding nodes are
{1, 1

3 , 1, 1
3 , 1, 1}, and the global clustering coefficient is C = 6

10 .
After the addition, local clustering coefficients change to
{1, 1

3 , 1
3 , 1

3 , 1
3 , 1}, and the global clustering coefficient value

is 6
14 .
We  define a local ˛-cluster as a subset of vertices that induces a

subgraph in which each node’s local clustering coefficient is at least
˛.

Definition 3 (Local ˛-cluster). Given a graph G = (V, E), a subset of
vertices C ⊆ V is called a local ˛-cluster if G[C] is connected and
every node in C has the local clustering coefficient at least  ̨ in G[C],
that is,

∑
j,k ∈ NG[C](i,j)i<j

ajk ≥ ˛

(
dG[C](i)

2

)
∀i ∈ C. (3)

Note that the definition of local clustering coefficient implies
that for an ˛-cluster C the degree of each node in G[C] is at least 2.
Also, it is easy to see that the edge density of the subgraph induced
by any local ˛-cluster is at least ˛. However, the set of vertices
inducing a subgraph with the edge density  ̨ may  not be a local
˛-cluster.

Similarly, we can define a global ˛-cluster as follows.

Definition 4 (Global ˛-cluster). Given a graph G = (V, E), a subset
of at least three vertices C ⊆ V is called a global ˛-cluster if G[C] is
connected and G[C] has the global clustering coefficient at least ˛,
that is,

∑
i ∈ C

∑
j,k ∈ NG[C](i),j<k

ajk ≥ ˛
∑
i ∈ C

(
dG[C](i)

2

)
. (4)

It is obvious that a local ˛-cluster is also a global ˛-cluster,
whereas the converse does not hold in general. Hence, the def-
inition of a local ˛-cluster guarantees stronger cohesiveness
properties than those enforced by the definition of a global ˛-
cluster. This is also evident from the experiments with real-life
networks reported in Section 4, which led us to focus primarily
on local ˛-clusters in this study.
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