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Social  network  analysts  have  often  collected  data  on negative  relations  such  as  dislike,  avoidance,  and
conflict.  Most  often,  the ties  are  analyzed  in  such  a way  that the  fact that  they  are  negative  is  of  no  conse-
quence.  For  example,  they  have  often  been  used  in  blockmodeling  analyses  where  many  different  kinds
of ties  are  used  together  and  all ties  are  treated  the same,  regardless  of  meaning.  However,  sometimes
we  may  wish  to apply  other  network  analysis  concepts,  such  as centrality  or  cohesive  subgroups.  The
question  arises  whether  all extant  techniques  are  applicable  to  negative  tie  data.  In this  paper,  we con-
sider  in  a systematic  way  which  standard  techniques  are  applicable  to  negative  ties and  what  changes
in  interpretation  have  to  be  made  because  of the nature  of  the  ties.  We  also introduce  some  new  tech-
niques  specifically  designed  for negative  ties.  Finally  we  show  how  one  of these  techniques  for  centrality
can  be  extended  to  networks  with  both  positive  and  negative  ties  to give  a new  centrality  measure  (PN
centrality)  that  is applicable  to  directed  valued  data with  both  positive  and negative  ties.
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1. Introduction

Many classic network datasets include both positive and nega-
tive relations. For example, among the standard datasets included
in UCINET (Borgatti et al., 2002), the Sampson monastery data,
Bank Wiring Room and Read’s highland tribes all have negative
relations. Negative relations are fundamental to certain theoretical
approaches in network analysis, such as balance theory (Heider,
1946; Cartwright and Harary, 1956), and the related clusterability
theory (Davis, 1967). In addition, negative relations have been a
standard part of blockmodeling (Lorrain and White, 1971; Breiger
et al., 1975; Everett and Borgatti, 1995) and semigroup work
(Boyd, 1990). Furthermore, there is a considerable psychologi-
cal literature on negative ties (Taylor, 1991) and conflict (Tajfel
and Turner, 1979). Recently, negative interactions like bullying
and social exclusion have been the subject of extensive research
(DeWall, 2013).

We note that our interest is specifically in relations that are in
themselves negative, rather than positive relations that may  have
negative consequences. For example, positive relations may  enable
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the flow of useful ideas and emotional support, but may  also trans-
mit  disease and misinformation. Thus, this paper is not intended as
a contribution to the ‘dark side of social capital’ literature (Portes
and Sensenbrenner, 1993; Gargiulo and Benassi, 2000). Rather, we
are concerned with directly negative relations, such as the antago-
nistic “hina” relation reported by Read (1954), the conflict relation
in the “bank wiring room” data reported by Roethlisberger and
Dickson (1939), and the judgments of dislike and disesteem among
monks reported by Sampson (1969). All of these represent negative
sentiments or behaviors toward other actors in the network.

The question we address in this paper is how to analyze nega-
tive tie data. One reason for concern is that negative relations tend
to form different structures than positive relations do. For exam-
ple, in positive tie networks we  almost always see high levels of
transitivity – e.g., the friends of friends are often friends. But in
negative tie networks we see very low levels of transitivity: ene-
mies of enemies do not tend to be enemies. As a result, they tend
not to have any clustering. Even more fundamentally, negative tie
networks tend to be very sparse, making it difficult to fit tie-level
models, and typically resulting in highly disconnected networks,
making it impossible to apply certain network analysis methods.

A deeper reason for concern about negative tie networks is that
social processes that occur in positive tie networks may  not occur
in negative tie networks. For example, in a friendship network, we
expect the ties to serve as a backcloth along which traffic may flow
(Atkin, 1977). So if there is a directed path from A to B to C to D, we
expect that over time and with some probability something (e.g.,

http://dx.doi.org/10.1016/j.socnet.2014.03.005
0378-8733/Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.socnet.2014.03.005
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2014.03.005&domain=pdf
mailto:martin.everett@manchester.ac.uk
mailto:meverett61@yahoo.com
dx.doi.org/10.1016/j.socnet.2014.03.005


112 M.G. Everett, S.P. Borgatti / Social Networks 38 (2014) 111–120

information) could diffuse from A to D. Much of the machinery of
network analysis, especially centrality, is based on this expecta-
tion (Borgatti, 2005). But, under what circumstances can we expect
flows beyond the dyad in a negative tie network? Suppose A dislikes
B, and provides B with some embarrassing news about B’s mother.
If B dislikes C, can we really expect B to pass the original message
along to C?

In this paper we present a general assessment of which network
analytic concepts and techniques apply to negative relations, and
how interpretations need to be adjusted when they are applied
to negative ties. We  also introduce new concepts and measures
specifically designed for negative ties.

In so doing we hope to provide tools that will help network
researchers understand networks of negative ties or at least provide
them with tools that will enable them to test empirical hypothe-
sis about such networks. For example at the node level if we  had
robust negative tie centrality measures we could examine whether
people with high or low centrality are ignored or preferred in who
is chosen for promotion in an organizational trust network. At the
network level if we had measures that accommodate both posi-
tive and negative ties we could see the effect of negative ties on
the centralities of all the actors in the network and hence deter-
mine how detrimental (or not) negative ties are. We  may  be able to
detect potential victims or groups of victims in a bullying network
and hence plan an intervention at an early stage which provides
support and so prevents an escalation. We  do not specifically aim
to demonstrate the full potential of the methods we propose here,
but hope to start to build a collection of tools that will aid empirical
analysis.

2. Standard methods

There is one class of standard network concepts that clearly
applies to negative data without modification of any kind. This is
the set of positional or role equivalence concepts, such as structural
equivalence (Lorrain and White, 1971), automorphic equivalence
and regular equivalence (White and Reitz, 1983; Everett and
Borgatti, 1995), all of which are indifferent to the type of relation
they are applied to. For example, if nodes A and B are structurally
equivalent in a directed negative-tie network, it means that A and
B send negative ties to the same third parties, and receive nega-
tive ties from the same parties. Structurally equivalent nodes are
typically expected to have similar outcomes with respect to struc-
tural processes, and this applies to negative ties as well. Structurally
equivalent nodes are also seen as occupying similar positions or
playing the same roles in a network, and again this will be the same
for negative ties. The same applies to other equivalences.

In principle, statistical techniques such as QAP correlation
(Hubert and Schultz, 1976) and regression (Dekker et al., 2007) can
be applied to both positive and negative directed tie data, although
the specific models we fit may  be different, and not just in a mirror-
image way. For example, sameness of language might be positively
related to positive ties, but would not necessarily be negatively
related to negative ties – after all, sometimes negative ties arise
precisely because people are able to communicate with each other.
In practice, the sparseness of negative tie data can sometimes cause
problems with estimation. Similar considerations apply to expo-
nential random graph models (ERGM). The overall framework is
perfectly applicable to negative data but the models that actually
fit are likely to be different. Moreover, it may  be that many of the
configurations (both directed and undirected) currently available
in ERGM software packages are less relevant for negative ties, and
new configurations should be developed.

The situation with centrality measures is a bit more complicated.
Perhaps the most translatable centrality measure is simple degree

(Freeman, 1979). In certain respects, degree makes perfect sense for
negative ties. For example, if the directed relation is “dislikes”, then
the actors with high indegree can be described as the most disliked
in the network – wholly parallel to the case of a “likes” network,
where indegree indicates popularity. Similarly, in the context of
social capital, high degree in a positive-tie network represents an
asset in an actor’s social ledger (Labianca and Brass, 2006), while
high degree in a negative-tie network represents a liability. The
difference in interpretation between degree in positive and neg-
ative tie networks parallels the difference in the interpretation of
the ties themselves, which causes us no difficulties. Bonacich and
Lloyd (2004) extend eigenvector centrality to networks of negative
ties resulting in a status measure. We explore their ideas more fully
later in this paper.

On the other hand, one way  that we  commonly interpret degree
centrality is in terms of risk of exposure to something flowing
through a network (Borgatti, 1995). For example, suppose a virus
enters a group at a random node and is transmitted at random to an
adjacent node, and so on. The probability of a random walk reach-
ing a particular node after a given number of hops is a function of
the degree of that node. Hence, in a positive-tie network, degree
centrality provides an index of exposure. However, as noted ear-
lier, in a negative-tie network we do not normally expect things to
flow along paths of length greater than one, in which case degree
centrality will not function as an index of exposure.

Similar considerations apply to other degree-related concepts,
such as graph density and degree-based graph centralization.1 For
example, for positive ties, increased density would suggest a group
with greater social cohesion. For negative ties, we would generally
expect the opposite. However, there are cases where the parallel is
less exact. For example, if in the negative-tie case all ties involve just
a few individuals (i.e., high graph centralization or a core/periphery
structure), the overall effect on the network could be an increase
in cohesion as the majority of the group bonds over the common
enemy.

Whereas degree centrality can be interpretable in settings
where flows do not make sense, betweenness centrality is diffi-
cult to interpret in the absence of flows. As Freeman (1979) defines
it, a node’s betweenness is essentially the number of times that the
node is along the shortest path between two  others. Where there
are multiple shortest paths between two  nodes, the focal node’s
betweenness score is incremented by the proportion of those short-
est paths that it is along. As discussed in Borgatti (2005), the formula
for betweenness centrality gives the expected number of times that
something flowing through a network (either directed or undi-
rected) will reach a particular node, given that it travels only on
shortest paths and chooses at random between equally short paths.
It is difficult to see how this measure could be interpreted in the
absence of some kind of a flow process. This is especially true for
flow betweenness (Freeman et al., 1991), which is built on the con-
cept of maximum flow through a system of pipes whose capacities
are given by the strengths of ties. Most variants of betweenness
centrality depend on the notion of flow, and as such are generally
inappropriate for negative-tie networks.

Closeness centralities (Freeman, 1979; Valente and Foreman,
1998; Stephenson and Zelen, 1989) are also difficult to inter-
pret in the absence of flows. All closeness centralities summarize
the length of paths (or, more generally, directed walks) that link
a node to the rest of the network. The longer these paths, the
greater the amount it takes for things to flow between the nodes,
and the greater the probability of a failure to flow. Therefore,
nodes separated from the network as a whole by longer paths are

1 Our remarks here and in subsequent paragraphs apply equally to directed and
undirected graphs.
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