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a  b  s  t  r  a  c  t

As  a consequence  of  the  rising  interest  in  longitudinal  social  networks  and  their  analysis,  there  is also
an increasing  demand  for tools  to visualize  them.  We  argue  that  similar  adaptations  of state-of-the-
art  graph-drawing  methods  can be  used  to visualize  both,  longitudinal  networks  and  predictions  of
stochastic  actor-oriented  models  (SAOMs),  the  most  prominent  approach  for analyzing  such  networks.
The proposed  methods  are  illustrated  on a longitudinal  network  of  acquaintanceship  among  university
freshmen.
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1. Introduction

With the ever-increasing availability of time-varying data and
the diffusion of advanced modeling methods, research on lon-
gitudinal network analysis is widening tremendously. This is
especially true for the interest in dependencies among tie dynam-
ics and actor attributes, and more concretely the co-evolution
of networks and behavior. Since the temporal dimension consti-
tutes an additional, qualitatively different level of complexity, the
demands on visualization tools are even higher than they are any-
way in static network analysis (Bender-deMoll and McFarland,
2006).

Social network visualization is a field of growing interest in
itself (Klovdahl, 1981; Freeman, 2000; Brandes et al., 2006), and
partly so because very different approaches are suitable for specific
use cases. For the present case, we assume to have longitu-
dinal network data given in the form of panel data, i.e., as a
time-ordered sequence of interrelated network observations that
possibly differ in actor composition, structure, and attributes. In
social sciences, this is the most common form of longitudinal
network data today, and often due to data collection in waves
or aggregation of dyadic events over time intervals. The latter is
frequently done to allow for the application of the same meth-
ods that are common for static networks, and various forms
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of aggregation are described in Bender-deMoll and McFarland
(2006).

We  here define our problem area as that of visualizing a given
sequence of snapshots of an evolving social network (rather than,
say, an unordered collection of networks, an event stream, or
a process taking place on a network). The task is further lim-
ited to producing a corresponding sequence of diagrams which
may  or may  not serve as the basis of an animation (rather
than, say, a merged view of the entire evolution). The char-
acterizing trade-off in this situation is between the individual
quality of each snapshot and the persistence of features over
the sequence (Brandes and Wagner, 1997). In other words, each
diagram should be a good representation of the corresponding
cross-sectional network, and at the same time, a mental map of
the structure should be preserved as much as possible to relate
the individual frames with less cognitive effort (Misue et al.,
1995).

The motivation behind this task is to facilitate visual explo-
ration of longitudinal network data in a generic way. By using
a specific methodology, however, analysts take a specific per-
spective that is generally in need of targeted visualization
designs. As a concrete example, we here focus on the most
prominent approach to longitudinal social network analysis,
stochastic actor-oriented modeling (Snijders, 2005; Snijders et al.,
2010b), and show that with little adaptation, the same visu-
alization techniques can be applied to reveal such a model’s
predictions and interrelate them with the actual observa-
tion. Our approach is likely to generalize to other models as
well.

The remainder of this article is organized into three main
parts. Since the crucial technical challenge in network visualization
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is to find a suitable layout for the underlying graph struc-
ture, we start by providing background on layout algorithms
for static graphs in Section 2, and outline a method known as
stress minimization that is central to our approaches. In Sec-
tion 3, we review the dynamic graph drawing problem, and
propose specific instantiations of stress minimization designed
for visual exploration of dynamic graphs. In the third part, we
introduce two targeted visualization approaches for stochastic
actor-oriented models (SAOMs) in Section 5, after recalling the for-
mal  basics of SAOMs in Section 4. The first of these approaches
shall help assess congruence of simulations and observations
w.r.t. their underlying graph structure, whereas the second one
is to point to inhomogeneities across actors, if any. We  con-
clude with a brief discussion that includes directions for future
work.

1.1. Running example

We  use a longitudinal network of acquaintanceship among uni-
versity students as a running example. The data is courtesy of Britta
Renner and Manja Vollmann (Department of Psychology, Univer-
sity of Konstanz) and was collected in 15 waves between October
2008 and February 2009.

Students provided, among many other data, their current per-
ceived level of acquaintanceship with each other on a scale from
1 (lowest) to 7 (highest). We  dichotomized each observation
using 5 as a threshold. Of the 78 freshmen majoring in Psy-
chology, only nine did not participate in an initial screening,
never answered any questionnaire, or never made a nomination
resp. were never nominated at a level above the thresh-
old.

The example networks thus consist of acquaintance-
ship nominations among 69 students (18 male, 51 female)
that form a connected component when aggregated over all
waves.

The data constitutes a realistic scenario in which our methods
may  be applied, but is used here solely for illustrative purposes.
No attempt at justifying models or drawing conclusions will be
made.

2. Graph drawing methods for static general graphs

Social network visualization can draw on two major streams
of research, information visualization of networks (Herman
et al., 2000) and graph drawing (Di Battista et al., 1999;
Kaufmann and Wagner, 2001). Roughly speaking, the focus
in information visualization is on visualization design, navi-
gation, and interactivity, whereas properties and construction
of geometric representations are more central to graph draw-
ing.

We here restrict our scope to the most common graph-
ical representation for social networks, node-link diagrams
(referred to as sociograms in Moreno, 1953), in which actor-
representing vertices are depicted as points (or, more precisely,
graphical elements described by a single position), and tie-
representing edges are depicted as lines linking their endpoints.
We will not, in general, make the distinction between actors,
nodes, vertices, and points, and between ties, links, edges, and
lines.

The central task in creating node-link diagrams is to determine
positions for its elements, referred to as the diagram’s layout in
the following. This is because positional differences are the most
accurately perceived graphical attributes (Cleveland and McGill,
1984), and layout with complex dependencies is the most challeng-
ing problem algorithmically. If the layout is of low quality, even the

best graphical design (in terms of using other graphical attributes
such as shape, color, size, etc.) or interaction mechanisms can only
attenuate the problems of poor legibility and interpretation arti-
facts.

While graph structure is represented completely in plain node-
link diagrams, the other attributes of a network can be incorporated
by varying graphical attributes as mentioned above. Clearly, these
choices are more dependent on the data and context, and in general
easier to implement.

2.1. Graph layout

In addition to distinct vertex positions to avoid ambiguity,
the following objectives are commonly considered relevant for
application-independent layout (Bertin, 1983; Purchase et al.,
1997).

• Edges should be of more or less the same length.
• Vertices should be distributed well over the drawing area.
• The number of meaningless edge crossings should be kept small.
• Symmetries in graph structure should be visible in geometric

symmetries.

For specific applications and purposes, there may be many more
criteria to observe. For most of them, optimization is computa-
tionally intractable even in isolation, at least for general graphs.
Since, in addition, the various criteria are frequently contradictory,
general-purpose graph-drawing algorithms are usually heuristic in
nature.

Even though social networks exhibit some general tendencies
such as sparseness and local clustering, they do not constitute a
formally boundable class of graphs that allows for specific opti-
mization algorithms. Due to their general applicability, conceptual
simplicity, wide availability, and ability to produce satisfactory
results in general, the most popular class of methods used for
social network layout are force-directed or energy-based methods
(Brandes, 2001), colloquially known as spring embedders (Eades,
1984).

The most widely available, and often only, layout algorithm in
common software tools for social network analysis is the spring
embedder variant of Fruchterman and Reingold (1991).  It is a force-
directed method in which a graph is likened to a physical system
of repelling objects (the vertices) and springs of a given length
(the edges) binding adjacent vertices together. Vertices are iter-
atively repositioned based on the forces exerted on them, so that
the system moves toward a force equilibrium. The approach is easy
to implement and yields acceptable results for small graphs, and
it can be tuned for specific purposes by introducing additional or
alternative forces.

There is, however, clear experimental evidence (Brandes and
Pich, 2009) that this and related force-directed methods do not
scale well to larger graphs, both in terms of quality and efficiency.
It is almost ironic that a current variant of the earliest computer-
implemented method for drawing social networks (Kruskal and
Seery, 1980, already applied in the late 60s), turns out to be far
superior.

This favorable approach, known as stress minimization, is an
instance of a family of dimension-reduction methods referred to as
multidimensional scaling (see, e.g., Cox and Cox, 2001). It is based on
an objective function called stress (Kruskal and Wish, 1978) and was
re-popularized in graph drawing by Gansner et al. (2004).  Details
are given next, but it should be noted that the same objective func-
tion was also used in the spring embedder of Kamada and Kawai
(1988), although with an inferior minimization method.



Download English Version:

https://daneshyari.com/en/article/1129373

Download Persian Version:

https://daneshyari.com/article/1129373

Daneshyari.com

https://daneshyari.com/en/article/1129373
https://daneshyari.com/article/1129373
https://daneshyari.com

