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a  b  s  t  r  a  c  t

As  network  data  gains  popularity  for research  in  various  fields,  the  need  for  methods  to  predict  future
links  or  find  missing  links  in the  data  increases.  One  subset  of  the  methodology  used  to  solve  this  problem
involves  creating  a similarity  measure  between  each  pair  of nodes  in  the  network;  unfortunately,  these
methods  can  be shown  to  have arbitrary  cutoffs  and  poor  performance.  To  address  these  shortcomings,  we
use  the  adjusted  Rand  index  to create  a similarity  measure  between  nodes  that  has  a  natural  threshold
of  zero.  The  effectiveness  of  this  method  is  then  compared  to  a  number  of  other  similarity  measures
and  assessed  on  a variety  of  simulated  data  sets  with  block  model  structure  and  three  real  network
data  sets.  Under  this  particular  formulation  of  the  adjusted  Rand  index,  information  is  also  provided
on  dissimilarity.  As  such,  we  then  go  on  to test  its use for  detecting  incorrect  links  in  network  data,
highlighting  the dual  use of  the approach.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Network (e.g., graph) data consist of nodes and edges. The nodes
can represent any object of interest and the edges are the links
between these nodes signifying some form of a connection. This
type of data is used in many fields to represent different structures
from the neural networks and food chains of the biological sciences
(Zhu et al., 2007) to analysis of terrorist networks (e.g. Krebs, 2002;
Ressler, 2006). Networks can be either directed, where a link from
one node to another is not necessarily reciprocated, or undirected,
where two nodes are either connected or not. Links can also be
weighted, providing a measure of strength for each connection. For
this study, we focus only on undirected/unweighted graphs.

One increasingly popular subset of networks used in fields such
as sociology and psychology is social networks (see Wasserman and
Faust, 1994, for an overview). These networks are comprised specif-
ically of people or groups and the connections between them, and,
more commonly, when measured over time, dynamic networks
that add and drop nodes/links as the network evolves. Given the
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complexity of social networks and their tendency to change over
time, detecting links not present in the observed data (e.g., the links
are truly present, but were not observed) is an important question.
This is divided into two problems that would have similar solutions:
(a) the missing link problem and (b) the link prediction problem.
Searching for missing links is attempting to identify any links that
should be in the data set that were not observed, whether from data
measurement errors or unknown information. The link prediction
problem focuses on links that might occur in the future based on
the observed network. Examples often seen in link prediction lit-
erature use a network of authors collaborating on papers, where
the goal would be to predict collaborations for future papers (e.g.
Newman, 2001; Shibata et al., 2012).

In looking at the graph structure of social networks, it is com-
mon  to see clustering (e.g., tightly connected subgroups that are
well separated from each other). For instance, in Newman’s 2001
analysis of citation networks, the clustering coefficient indicated
that the networks were highly clustered. Similarly, other research
has focused on identifying clusters in social networks (e.g. Brusco
and Steinley, 2007; Mishra et al., 2008; Steinley et al., 2011; Duan
et al., 2012). While the present investigation is not concerned with
identifying an underlying cluster structure, the presence of cluster-
ing will be taken into account in order to evaluate potential impact
among the different link prediction measures.

The purpose of this study is to improve the existing link pre-
diction methodology by proposing the application of a proximity
measure, the Adjusted Rand Index (ARI), previously unused for this
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type of analysis. Section 2 of this paper describes a selection of
existing methods for prediction links in networks using proxim-
ity measures (Section 2.1). This is followed by a description of the
proposed method, using the ARI (Section 2.2), as well as a number
of similar proximity measures used for comparison (Section 2.3).
In Section 3 the procedures used to test and compare the methods
of Section 2 are described: a simulation study for link prediction
(Section 3.1), a comparison on real network data (Section 3.2) and
finally a simulation considering an additional application of the ARI
in detecting incorrect links (Section 3.3). The results of these anal-
ysis are described in Section 4 and Section 5 contains concluding
remarks.

2. Methods for link prediction

There are many methods that have been created to predict links
(see Liben-Nowell and Kleinberg, 2007), involving a wide range
of techniques from those rooted in the most basic graph theory
to more complicated machine learning algorithms and those that
require additional substantive information about the network. In
this study, we focus on the easiest to implement (and perhaps the
most widely used, for that reason): proximity measures. Proxim-
ity measures indicate a “distance” between each pair of nodes and
solely rely on the structure of the network. This distance (or func-
tion thereof) represents how likely it is that a link should be present
between two nodes. Common practice is to rank the ensuing dis-
tances (usually from smallest to largest – or most similar to least
similar) and a certain number or percentage of the best scores of
the unlinked pairs are taken to be the “predicted” edges. Naturally,
one potential shortcoming of such an approach is determining the
percentage of links that should be imputed; unfortunately, thus far,
few guidelines have been provided.

2.1. Current methods

To introduce general notation for a network, assume ni is the
ith object, and i = 1, . . .,  N. Frequently, network information is col-
lected in the adjacency matrix, AN×N = {aij}, where A is a square
N × N matrix that represents the connections between all pairs of
objects. Specifically, aij = 1 if ni is connected to nj; otherwise, aij = 0.
This information can be summarized in row vectors corresponding
to the ith and jth row in A, a′

i and a′
j , (where each are 1 × n vectors,

respectively).
If one considers the similarity between ni and nj, there are four

possible “states” for binary vectors that can be computed when
considering the mutual pattern of connections between ni and nj
when related to all of the other remaining nodes. The counts of
these states gives us four quantities: (a) the number of links to
other nodes nm that ni and nj have in common, (b) the number of
times that ni has links to other nodes, nm, and nj does not, (c) the
number of times that ni does not have links to other nodes nm, but
nj does, and (d) the number of times that links to other nodes nm

are mutually absent for ni and nj. For any pair of row vectors, a′
i

and a′
j , in the adjacency matrix the four quantities can be quickly

computed from the following inner products

a = a′
iaj

b = a′
i(1 − aj)

c = (1 − ai)′aj

d = (1 − ai)′(1 − aj)

Often, these four values are collected in a simple 2 × 2 contingency
table, as indicated in Table 1. The values of this contingency table are

Table 1
The contingency table for each pair of nodes i and j across all other nodes m.

Node j Node i

Linked to Node m Not Linked to Node m

Linked to Node m a b
Not Linked to Node m c d

combined in various ways to form similarity or proximity measures.
Four proximity measures currently used for link prediction studies
are described in the next section, three of which are calculated from
the proximity table.

2.1.1. Graph distance
The first, and likely simplest approach, is what is commonly

referred to as the “graph distance” in the link prediction literature.
In graph theory, the graph distance would be referred to as the
geodesic distance – the shortest path between a pair of nodes. As
an example, for nodes ni and nj, the geodesic distance represents the
shortest path, and if the graph is connected, the geodesic distance
will be a metric (Harary, 1969). The geodesic distance between a
pair of nodes can be calculated by numerous algorithms (for exam-
ple, Dijkstra, 1959); however, the simplest approach (although not
the fastest) is the method of powers.

The power of a graph’s adjacency matrix, Ap, gives the number
of walks of length p between all pairs of nodes. Consequently, the
geodesic distance matrix, D(GD) has the entries d(GD)

ij
= p where p is

the smallest p such that ap
ij

> 0. Calculating the geodesic distance

for each pair of nodes creates a set of N × (N − 1) distances,3 where
the predicted (e.g., imputed) links are going to between nodes that
have the smallest values of d(GD)

ij
conditional on not already being

directly connected within the observed network.

2.1.2. Common neighbors
Another commonly used method is common neighbors (CN),

represented by

CNij = |�(i) ∩ �(j)| = a (1)

where CNij is the common neighbor score between nodes i and j,
| • | is the cardinality of •, and �(i) and �(j) are the set of nodes that
node i and node j share direct links with, respectively. Thus, Eq.
(1) represents the cardinality of the intersection of those two  sets
(e.g., the number of nodes to which each i and j are mutually linked).
This measure is equivalent to a in Table 1. An intuitively appealing
aspect of this measure is that it would also be monotonically related
to the fraction of possible triangles containing nodes i and j that are
actually formed, a common measure of density used to determine
clustering (Wasserman and Steinley, 2003).

2.1.3. Jaccard’s coefficient
If CN is thought of as the probability of forming a triangle

containing nodes i and j across the entire graph, then Jaccard’s
coefficient (JC,  Dowton and Brennan, 1980; Steinley, 2004) is a
conditional probability of forming a triangle across the local neigh-
borhoods of node i and j

JCij = |�(i) ∩ �(j)|
|�(i) ∪ �(j)| = a

a + b + c
(2)

where the denominator is now the cardinality of the union between
the two  neighborhood sets (or the sum of a, b,and c as defined
in Table 1). In addition to being used to predict links, Jaccard’s

3 The diagonal elements of D(GD) are automatically set equal to zero.



Download English Version:

https://daneshyari.com/en/article/1129403

Download Persian Version:

https://daneshyari.com/article/1129403

Daneshyari.com

https://daneshyari.com/en/article/1129403
https://daneshyari.com/article/1129403
https://daneshyari.com

