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a b s t r a c t

In recent years, researchers have investigated a growing number of weighted networks where ties are
differentiated according to their strength or capacity. Yet, most network measures do not take weights
into consideration, and thus do not fully capture the richness of the information contained in the data.
In this paper, we focus on a measure originally defined for unweighted networks: the global clustering
coefficient. We propose a generalization of this coefficient that retains the information encoded in the
weights of ties. We then undertake a comparative assessment by applying the standard and generalized
coefficients to a number of network datasets.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

While a substantial body of recent research has investigated the
topological features of a variety of networks (Barabási et al., 2002;
Ingram and Roberts, 2000; Kossinets and Watts, 2006; Uzzi and
Spiro, 2005; Watts and Strogatz, 1998), relatively little work has
been conducted that moves beyond merely topological measures
to take explicitly into account the heterogeneity of ties (or edges)
connecting nodes (or vertices) (Barrat et al., 2004). In a number
of real-world networks, ties are often associated with weights that
differentiate them in terms of their strength, intensity or capacity
(Barrat et al., 2004; Wasserman and Faust, 1994). On the one hand,
Granovetter (1973) argued that the strength of social relationships
in social networks is a function of their duration, emotional inten-
sity, intimacy, and exchange of services. On the other, for non-social
networks, weights often refer to the function performed by ties,
e.g., the carbon flow (mg/m2/day) between species in food webs
(Luczkowich et al., 2003; Nordlund, 2007), the number of synapses
and gap junctions in neural networks (Watts and Strogatz, 1998), or
the amount of traffic flowing along connections in transportation
networks (Barrat et al., 2004). In order to fully capture the richness
of the data, it is therefore crucial that the measures used to study a
network incorporate the weights of the ties.

A measure that has long received much attention in both the-
oretical and empirical research is concerned with the degree to
which nodes tend to cluster together. Evidence suggests that in most
real-world networks, and especially social networks, nodes tend to
cluster into densely connected groups (Feld, 1981; Friedkin, 1984;
Holland and Leinhardt, 1970; Louch, 2000; Simmel, 1923; Snijders,
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2001; Snijders et al., 2006; Watts and Strogatz, 1998). In partic-
ular, the problem of network clustering can be investigated from
a two-fold perspective. On the one hand, it involves determining
whether and to what extent clustering is a property of a network
or, alternatively, whether nodes tend to be members of tightly knit
groups (Luce and Perry, 1949). On the other, it is concerned with
the identification of the groups of nodes into which a network can
be partitioned. This can be obtained, for example, by applying algo-
rithms for community detection that assess and compare densities
within and between groups (Newman, 2006; Newman and Girvan,
2004; Rosvall and Bergstrom, 2008), or by using the image matrix
in blockmodeling for grouping nodes with the same or similar pat-
terns of ties and uncovering connections between groups of nodes
(Doreian et al., 2005).

In this paper, we focus our attention only on the problem of
determining whether clustering is a property of a network. More
specifically, to address this problem one may ask: If there are three
nodes in a network, i, j, and k, and i is connected to j and k, how
likely is it that j and k are also connected with each other? In real-
world networks, empirical studies have shown that this likelihood
tends to be greater than the probability of a tie randomly estab-
lished between two nodes (Barabási et al., 2002; Davis et al., 2003;
Ebel et al., 2002; Holme et al., 2004; Ingram and Roberts, 2000;
Newman, 2001; Uzzi and Spiro, 2005; Watts and Strogatz, 1998). For
social networks, scholars have investigated the mechanisms that
are responsible for the increase in the probability that two people
will be connected if they share a common acquaintance (Holland
and Leinhardt, 1971; Simmel, 1923; Snijders, 2001; Snijders et al.,
2006). The nature of these mechanisms can be cognitive, as in the
case of individuals’ desire to maintain balance among ties with oth-
ers (Hallinan, 1974; Heider, 1946), social, as in the case of third-part
referral (Davis, 1970), or can be explained in other ways, such as in
terms of focus constraints (Feld, 1981; Kossinets and Watts, 2006;
Louch, 2000; Monge et al., 1985) or the differing popularity among
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individuals (Feld and Elmore, 1982a, b). While clustering is likely to
result from a combination of all these mechanisms, network stud-
ies have offered no conclusive theoretical explanation of its causes,
nor have they concentrated as much on its underpinning processes
as on the measures to formally detect its presence in real-world
networks (Levine and Kurzban, 2006).

Traditionally, the two main measures developed for testing the
tendency of nodes to cluster together into tightly knit groups are the
local clustering coefficient (Watts and Strogatz, 1998) and the global
clustering coefficient (Feld, 1981; Karlberg, 1997, 1999; Louch,
2000; Newman, 2003). The local clustering coefficient is based on
ego’s network density or local density (Scott, 2000; Wasserman and
Faust, 1994). For node i, this is measured as the fraction of the num-
ber of ties connecting i’s neighbors over the total number of possible
ties between i’s neighbors. To create an overall local coefficient for
the whole network, the individual fractions are averaged across all
nodes.

Despite its ability to capture the degree of social embeddedness
that characterizes the nodes of a network, nonetheless the local
clustering coefficient suffers from a number of limitations. First,
in its original formulation, it does not take into consideration the
weights of the ties in the network. As a result, the same value of
the coefficient might be attributed to networks that share the same
topology but differ in terms of how weights are distributed across
ties and, as a result, may be characterized by different likelihoods
to befriend the friends of one’s friends. Second, the local clustering
coefficient does not take into consideration the directionality of
the ties connecting a node to its neighbors (Wasserman and Faust,
1994).1 Recently, there have been a number of attempts to extend
the local clustering coefficient to the case of weighted networks
(Barrat et al., 2004; Lopez-Fernandez et al., 2004; Onnela et al.,
2005; Zhang and Horvath, 2005). However, the issue of directional-
ity still remains mainly unresolved (Caldarelli, 2007), thus making
the coefficient suitable primarily for undirected networks.

Moreover, the local clustering coefficient, even in its weighted
version, is biased by correlations with nodes’ degrees: a node with
more neighbors is likely to be embedded in relatively fewer closed
triplets, and therefore to have a smaller local clustering than a node
connected to fewer neighbors (Ravasz and Barabási, 2003; Ravasz et
al., 2002). An additional bias might stem from degree–degree cor-
relations. When nodes preferentially connect to others with similar
degree, local clustering is positively correlated with nodes’ degree
(Ravasz and Barabási, 2003; Ravasz et al., 2002; Soffer and Vàzquez,
2005). Lack of comparability between values of clustering of nodes
with different degrees thus makes the average value of local clus-
tering sensitive with respect to how degrees are distributed across
the whole network.

Unlike the local clustering coefficient, the global clustering coef-
ficient is based on transitivity, which is a measure used to detect the
fraction of triplets that are closed in directed networks (Wasserman
and Faust, 1994, p. 243). It is not an average of individual frac-
tions calculated for each node, and, as a result, it does not suffer
from the same type of correlations with nodes’ degrees as the
local coefficient. Despite its merits, however, in its original formu-
lation, the global coefficient applies only to networks where ties
are unweighted. To address this limitation, and make the coeffi-
cient suitable also to networks where ties are weighted, researchers
have typically introduced an arbitrary cut-off level of the weight,
and then dichotomized the network by removing ties with weights
that are below the cut-off, and then setting the weights of the
remaining ties equal to one (Doreian, 1969; Wasserman and Faust,

1 Node i’s neighbor might be: (1) a node that has directed a tie toward i; (2) a node
to which i has directed a tie; or (3) a node that has directed a tie toward i and, at the
same time, has received a tie from i.

1994). The outcome of this procedure is a binary network consist-
ing of ties that are either present (i.e., equal to 1) or absent (i.e.,
equal to 0) (Scott, 2000; Wasserman and Faust, 1994). For example,
Doreian (1969) studied clustering in a weighted network by creat-
ing a series of binary networks from the original weighted network
using different cut-offs. To address potential problems arising from
the subjectivity inherent in the choice of the cut-off, a sensitivity
analysis was conducted to assess the degree to which the value
of clustering varies depending on the cut-off (Doreian, 1969). How-
ever, this analysis tells us little about the original weighted network,
apart from the fact that the value of clustering changes at different
levels of the cut-off.

In this paper, we focus on the global clustering coefficient, and
propose a generalization that explicitly takes weights of ties into
consideration and, for this reason, does not depend on a cut-off to
dichotomize weighted networks. In what follows, we start by dis-
cussing the existing literature on the global clustering coefficient in
undirected and unweighted networks. In Section 3, we propose our
generalized measure of clustering. We then turn our attention to
directed networks, and discuss the current literature on clustering
in those networks. We extend our generalized measure of clustering
to cover weighted and directed networks. In Section 5, we empiri-
cally test our proposed measure, and compare it with the standard
one, by using a number of weighted network datasets. Finally, in
Section 6 we summarize and discuss the main results.

2. Clustering coefficient

The global clustering coefficient is concerned with the density of
triplets of nodes in a network. A triplet can be defined as three nodes
that are connected by either two (open triplet) or three (closed
triplet) ties. A triangle consists of three closed triplets, each cen-
tered on one node. The global clustering coefficient is defined as
the number of closed triplets (or 3× triangles) over the total num-
ber of triplets (both open and closed). The first attempt to measure
the coefficient was made by Luce and Perry (1949). For an undi-
rected network, they showed that the total number of triplets could
be found by summing the non-diagonal cells of a squared binary
matrix. The number of closed triplets could be found by summing
the diagonal of a cubed matrix. For clarity, we will refer to the global
clustering coefficient as the standard clustering coefficient C:

C = 3 × number of triangles
number of triples

=
∑

��∑
�

(1)

where
∑

� is the total number of triplets and
∑

�� is the sub-
set of these triplets that are closed as a result of the addition of a
third tie. The coefficient takes values between 0 and 1. In a com-
pletely connected network, C = 1 as all triplets are closed, whereas
in a classical random network C → 0 as the network size grows.
More specifically, in a classical random network, the probabilities
that pairs of nodes have of being connected are, by definition, inde-
pendent (Erdős and Rényi, 1959; Solomonoff and Rapoport, 1951).
Therefore, C is equal to the probability of a tie in these networks
(Newman, 2003).

A major limitation of the clustering coefficient is that it cannot
be applied to weighted networks. As a result, the same outcome
might be attributed to networks that differ in terms of distribu-
tion of weights and that, for this reason, might be characterized
by different likelihoods of one’s neighbors being connected with
each other. This limitation could therefore bias the analysis of the
network structure. In order to overcome this shortcoming, in the
following section we will propose a generalization of the cluster-
ing coefficient that explicitly captures the richness of the weights
attached to ties, while at the same time it produces the same results
as the standard clustering coefficient when ties are unweighted.
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