
Surveys in Operations Research and Management Science 21 (2016) 1–17

Contents lists available at ScienceDirect

Surveys in Operations Research and Management Science

journal homepage: www.elsevier.com/locate/sorms

Review

Consistent notation for presenting complex optimization models in
technical writing
Michael D. Teter a, Alexandra M. Newman a,∗, Martin Weiss b

a Operations Research with Engineering PhD Program, Mechanical Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
b European Commission - DG JRC, Institute for Energy and Transport, Sustainable Transport Unit, Via Enrico Fermi 2749 - TP 441, I-21010, Ispra, Italy

a r t i c l e i n f o

Article history:
Received 18 June 2015
Received in revised form
16 May 2016
Accepted 16 May 2016

a b s t r a c t

With an increase in computational power, and with recent advances in software, practitioners are
formulating evermore complicated optimizationmodels,many ofwhich are drawn from interdisciplinary
applications and are designed to reflect the details of real-world systems.While suchmodels have proven
useful in providing implementable solutions with a verified impact, they are also more cumbersome
to document in a clear and concise manner. In this paper, we recommend: (i) conventions for defining
sets, parameters, and variables, (ii) ways of presenting the objective and constraints, and (iii) means
by which to organize formulations. While other conventions may be perfectly acceptable, we suggest
one set of guidelines for graduate students, academics, and practitioners in need of clearly and easily
presenting a large, complex optimization model. Self-study and/or the introduction of these principles
into an applied, advanced graduate class can remove ambiguity from model formulations and improve
the communication between modelers and their intended audience.

© 2016 Elsevier B.V. All rights reserved.

Contents

1. Introduction and background.. 2
2. Indices and sets .. 3
3. Parameters.. 4

3.1. Notation.. 4
3.2. Physical units ... 5

4. Variables ... 6
5. Objective function.. 7
6. Constraints.. 7
7. Extensions for stochastic programs .. 9
8. Additional examples .. 9

8.1. Blending.. 9
8.2. Aggregate planning.. 10
8.3. Scheduling .. 11
8.4. Capital budgeting... 12
8.5. (Stochastic) facility location.. 14

9. Further advice and conclusions... 15
Acknowledgments ... 16
References... 16

∗ Corresponding author.
E-mail addresses:mteter@mines.edu (M.D. Teter), newman@mines.edu (A.M. Newman), martin.weiss@jrc.ec.europa.eu (M. Weiss).

http://dx.doi.org/10.1016/j.sorms.2016.05.001
1876-7354/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sorms.2016.05.001
http://www.elsevier.com/locate/sorms
http://www.elsevier.com/locate/sorms
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sorms.2016.05.001&domain=pdf
mailto:mteter@mines.edu
mailto:newman@mines.edu
mailto:martin.weiss@jrc.ec.europa.eu
http://dx.doi.org/10.1016/j.sorms.2016.05.001

2 M.D. Teter et al. / Surveys in Operations Research and Management Science 21 (2016) 1–17

1. Introduction and background

Implementable and implemented, complex applications of optimization have become a reality in the past three decades owing to
advances in both hardware and software. Correspondingly, graduate students, academics and novice practitioners can struggle with
the way in which to mathematically formulate these optimization models in a consistent and understandable manner. Our intended
audience is not the practitioner working with an already-established lexicon. Rather, we seek to suggest possible means to clearly express
optimizationmodels for those struggling to do so. In particular, we address graduate students in engineering and applied science and those
beginning to work in applied research settings who wish to present their mathematical models in formal and technical writing, e.g., as a
technical paper, journal article, or conference presentation. We also target those researchers who have yet to establish a lexicon, in part,
because they might have been working with more theoretical models. With this audience in mind, our article is intended for self-study
or as reference in graduate-level courses for those unfamiliar with written formulation techniques of complex models. An instructor or
primary investigator could direct students or research associates to this writing.

Mathematical programming nowconsists not ofwiring ‘‘three patch-boards,which became likemasses of spaghetti’’ [1], as it did during
the first implementation of the Simplex method (and, at which, Dantzig was ‘‘appalled’’), but of sophisticated hardware and software,
including algebraic modeling languages e.g., AMPL [2,3], and solvers, e.g., CPLEX [4], MINLPBB [5], and the toolkit MINOTAUR [6,7].

Optimization models of three decades ago were simple, often expressed as linear programs of the form:

minimize cx
subject to Ax = b
x ≥ 0

or as (mixed) integer programs of the form:

minimize cx + dy
subject to Ax + By = b
x ≥ 0, y binary (or integer)

or as nonlinear programs of the form:

minimize f(x)
subject to g(x) ≤ b
h(x) = c

where A and B arem×n andm×n′ matrices of left-hand-side constraint coefficients, respectively, c and d are 1×n and 1×n′ row vectors of
objective function coefficients, respectively, b is anm×1 column vector of right-hand-side data values for each constraint, and x and y are
vectors of continuous and discrete decision variables, respectively, that conform. While we later suggest differentiating parameters and
variables in their notational appearance basedon the specificity required to express an appliedmodel, note here that classicalmathematical
programs in their most general form use notation that differentiates a matrix (which is expressed here with a capital letter) and a vector
(which is expressed here with a boldface, lower case letter). The functions f(x), g(x), and h(x) represent nonlinear expressions. For
methodological development and small models, these forms suffice. However, for large, complex models expressing real-world details
such as those found in chemical engineering [8], civil engineering [9], electrical engineering [10], mechanical engineering [11], andmining
engineering [12], for example, a reader can become lost in the weeds of notation, the objective function, and the constraints.

Authors have emphasized the need to write well technically, and have suggested conventions in this vein, e.g., [13,14], and the
references contained therein. Both Gillman [15] and Higham [16] provide handbooks on expressing mathematics, the former author
concentrating purely on notation, and the latter including the communication of mathematics through writing a textbook or journal
article, or preparing a presentation. Here, we focus specifically on presenting optimization models with the operations research field in
mind.

Authors have provided technical guidance as to how to appropriately formulate a mathematical model. Brown [17] and Brown and
Rosenthal [18] describe good practice in applied optimizationmodeling, including writing, formulatingmodels, usingmodeling languages
and spreadsheets, and analyzing results. Brown and Dell [19] provide excellent examples of how to formulate a model based on its
structure. Newman and Weiss [20] describe some of these papers in more detail, and point to tutorials on optimization modeling and
associated algorithms in general. These papers cover the foundations of the mathematics associated with building and implementing
optimization models. By contrast, Powell [21] discusses the dialect of dynamic programming and proposes a standard notation for
stochastic (dynamic) programming problems. We also focus on the presentation of the mathematics within formal and technical writing,
but within a more general framework, not on the accompanying description or the dissemination of a model’s results to a wider audience.
We emphasize that our conventions are only suggestions. Thus, our intentions mimic those of Halmos [22], who states that his essay on
‘‘How towritemathematics’’ is subjective, i.e., that it might have been called ‘‘How Iwritemathematics’’. He emphasizes the importance of
good choice of specific mathematical notation as well as the way in which an entire paper should be written. Similarly, our article enables
the reader with good mathematical knowledge of his formulation to write it in a cohesive format that is easy to parse and understand.

It is the authors’ experience as instructors, research directors (in a lab or university environment), and as journal editors that
practitioners will substitute code for a mathematical formulation. We suggest that a formulation, in its entirety, should contain a section
on indices and sets, parameters (with units), variables (with units), the objective function, and the constraints, in that order, written with
mathematical symbols, as appropriate. The writer should never include modeling language code such as GAMS or AMPL as a substitute
for a mathematical formulation unless said code is for internal consumption, e.g., a project group within a research lab. Not only are these
modeling languages not universally known among practitioners, but coding constructs can only approximate mathematical notation.
Furthermore, poor coding conventions can lead to misinterpretation or errors of translation.

Download English Version:

https://daneshyari.com/en/article/1131457

Download Persian Version:

https://daneshyari.com/article/1131457

Daneshyari.com

https://daneshyari.com/en/article/1131457
https://daneshyari.com/article/1131457
https://daneshyari.com

