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a b s t r a c t 

The Container Loading Problem (CLP) literature has traditionally guaranteed cargo static 

stability by imposing the full support constraint for the base of the box. Used as a proxy 

for real-world static stability, this constraint excessively restricts the container space uti- 

lization and has conditioned the algorithms developed for this problem. In this paper we 

propose a container loading algorithm with static stability constraints based on the static 

mechanical equilibrium conditions applied to rigid bodies, which derive from Newton’s 

laws of motion. The algorithm is a multi-population biased random-key genetic algorithm, 

with a new placement procedure that uses the maximal-spaces representation to manage 

empty spaces, and a layer building strategy to fill the maximal-spaces . The new static stabil- 

ity criterion is embedded in the placement procedure and in the evaluation function of the 

algorithm. The new algorithm is extensively tested on well-known literature benchmark 

instances using three variants: no stability constraint, the classical full base support con- 

straint and with the new static stability constraint—a comparison is then made with the 

state-of-the-art algorithms for the CLP. The computational experiments show that by using 

the new stability criterion it is always possible to achieve a higher percentage of space 

utilization than with the classical full base support constraint, for all classes of problems, 

while still guaranteeing static stability. Moreover, for highly heterogeneous cargo the new 

algorithm with full base support constraint outperforms the other literature approaches, 

improving the best solutions known for these classes of problems. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Container Loading Problem (CLP) is a real-world driven, combinatorial optimization problem that addresses the op- 

timization of the spatial arrangement of cargo inside containers or transportation vehicles, maximizing the usage of space. 

As an assignment problem, it can have two basic objectives: the maximization of the value of the cargo loaded, when 

the number of containers is not sufficient to accommodate all the cargo, or the minimization of the value of containers, 

when there are sufficient containers to accommodate all the cargo. 

The problem belongs to the wider combinatorial optimization class of Cutting and Packing problems. According to 

the typology defined by Wäscher et al. (2007) for Cutting and Packing problems, these can be classified according to 

∗ Corresponding author. 

E-mail address: agr@isep.ipp.pt (A. Galrão Ramos). 

http://dx.doi.org/10.1016/j.trb.2016.06.003 

0191-2615/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.trb.2016.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/trb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2016.06.003&domain=pdf
mailto:agr@isep.ipp.pt
http://dx.doi.org/10.1016/j.trb.2016.06.003


566 A. Galrão Ramos et al. / Transportation Research Part B 91 (2016) 565–581 

dimensionality, assortment of large items, assortment of small items, kind of assignment and shape of small items. In this 

paper we will consider two types of problem with an output maximization objective. These problems can be classified either 

as three-dimensional, rectangular single large object placement problems (3D-SLOPP) or as three-dimensional, rectangular 

single knapsack problems (3D-SKP), depending on the cargo heterogeneity. 

The CLP is highly relevant to the field of transport management. The effect of globalization led to a world where products 

and services are exchanged in increasing numbers and distances by and to an increasing number of origins and destinations, 

and where containerization is the standard method of transporting goods and cargo worldwide. This scenario places a num- 

ber of challenges to achieve an efficient transport system, required for maintaining prosperity and economic development. 

New problems that arose such as the ones related with the urban freight transportation ( Sánchez-Díaz et al., 2015 ) or the 

designs of intermodal networks ( Meng and Wang, 2011 ) can directly benefit from a reduction of the congestion of cargo 

transport units that an efficient container space usage can provide. 

The arrangements for loading cargo into containers should comply with various requirements: cargo should not become 

damaged during transportation, transportation space should be used efficiently and workers’ safety should not be breached 

during loading and unloading of cargo. 

However, if the approach to the problem does not consider real-world constraints, such as cargo stability, container 

weight-limit or cargo orientation constraints, the solution will be of limited applicability to real-world scenarios. Cargo 

stability is considered in the literature as one of the most important CLP constraints. Its impact is not confined to the cargo 

as it can also influence the safety of both workers involved in loading operations and other persons or vehicles during 

transportation. 

In the CLP literature, cargo stability is sometimes addressed separating static and dynamic stability. Cargo static stability 

has been guaranteed by imposing the full support constraint on the base of the boxes. Although guaranteeing static stability, 

it excessively restricts the container space usage and does not necessarily meet real-world needs when e.g., overhanging 

cargo is allowed. The rather oversimplified way static stability has been treated by the majority of the authors it is also 

present in existing approaches to dynamic stability, where stability is measured by the mean number of boxes supporting 

the items excluding those placed directly on the floor and the percentage of boxes with insufficient lateral support ( Ramos 

et al., 2015 ). 

The CLP addressed in this work can be stated as follows: A given set of small items of parallelepiped shape of type 

k (k = 1 , . . . , K) (known as boxes), B = b 1 , b 2 , . . . , b K , where each box type, in quantity n k , is characterized by its depth, width 

and height ( d k , w k , h k ) are to be loaded into a large object of parallelepiped shape (known as a container), C , characterized 

by its depth, width and height, ( D, W, H ), with the objective of achieving a maximum utilization of the volume of the 

container, while meeting the following geometric loading constraints: 

• Each face of a box must be parallel to one of the faces of the container; 
• There must be no overlap between the boxes; 
• All boxes must lie entirely within the container; 
• Each box must be placed according to one of its possible orientations—each box type can have up to six possible orien- 

tations. 

The mechanical properties of the container and the boxes also necessitate the following additional practical constraints: 

• boxes can only be loaded through the container entrance; 
• static stability—each box must be able to maintain its loading position undisturbed during cargo loading; 
• all boxes are rigid; 
• the centre of gravity of each box is assumed to be its geometric centre. 

The dimensions ( D, W, H ) of container C lie parallel to the x, y and z axes, respectively, of the first octant of a Cartesian 

coordinates system, with the back-bottom-left corner lying at the origin of the coordinates system. The placement of a box 

b i in the container is given by its minimum and maximum coordinates, ( x 1 i , y 1 i , z 1 i ) and ( x 2 i , y 2 i , z 2 i ), respectively. 

The aim of this work is to present an algorithm for the CLP that addresses cargo stability under a realistic framework. 

The proposed algorithm combines a multi-population biased random-key genetic algorithm with a constructive heuristic 

that enforces a static stability constraint based on the static mechanical equilibrium conditions applied to rigid bodies, 

which derive from Newton’s laws of motion. The constructive heuristic uses a maximal-spaces representation to manage 

empty spaces, and a layer approach for filling the maximal-spaces . 

The remainder of the paper is organized as follows. Section 2 presents an overview of the literature covering the CLP and 

static stability within the CLP. In Section 3 the Container Loading Algorithm with Static Stability is presented. Section 4 re- 

ports the results from the computational experiments. Finally, Section 5 draws some conclusions from the findings. 

2. Literature review 

Many approaches have been proposed for solving the 3D-SLOPP and the 3D-SKP. The number of exact methods pro- 

posed is very limited and these can only solve problems of limited size. Exact methods were developed by Padberg (20 0 0) , 

Fekete et al. (2007) , Junqueira et al. (2012b ) and Junqueira et al. (2012a ). Alternatively, other methods have been proposed 

to find near-optimal packing solutions. Fanslau and Bortfeldt (2010) classified these methods as conventional heuristics, 
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