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a b s t r a c t

This work deals with a facility location problem in which location and allocation (trans-
portation) policy is defined in two stages such that a first-stage solution should be robust
against the possible realizations (scenarios) of the input data that can only be revealed in a
second stage. This solution should be robust enough so that it can be recovered promptly
and at low cost in the second stage. In contrast to some related modeling approaches from
the literature, this new recoverable robust model is more general in terms of the considered
data uncertainty; it can address situations in which uncertainty may be present in any of
the following four categories: provider-side uncertainty, receiver-side uncertainty, uncer-
tainty in-between, and uncertainty with respect to the cost parameters.

For this novel problem, a sophisticated branch-and-cut framework based on Benders
decomposition is designed and complemented by several non-trivial enhancements,
including scenario sorting, dual lifting, branching priorities, matheuristics and zero-half
cuts. Two large sets of instances that incorporate spatial and demographic information
of countries such as Germany and US (transportation) and Bangladesh and the
Philippines (disaster management) are introduced. They are used to analyze in detail the
characteristics of the proposed model and the obtained solutions as well as the effective-
ness, behavior and limitations of the designed algorithm.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, we are more and more aware of the growing presence of dynamism and uncertainty in decision making.
Fortunately, as the decisions become more complex, the availability of modeling, algorithmic and computational tools
increases as well. Facility location and allocation decisions are among the most relevant decisions in several private and pub-
lic transportation contexts and they usually involve strategic and operative policies with mid and long term impacts.
Precisely because of the practical relevance of these decisions, it is important that they incorporate the uncertainty that nat-
urally appears during the planning, modeling and operative process. Such uncertainty can be represented by different real-
izations of the input data: customers that actually require a commodity or a service, locations where the facilities can be
located, the transportation network that can be used for connecting customers with facilities, and the corresponding costs.
The true values of this data usually become available later in the decision process. In such cases a standard deterministic
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optimization model that considers a single possible outcome of the input data can lead towards solutions that are unlikely to
be optimal, or for that matter even feasible, for the final data realization.

Supply chain management is a strategical area in which both uncertainty and facility location are core elements. For
instance, as it is pointed out in Snyder and Daskin (2005), supply chains are particularly vulnerable to disruptions (inten-
tional or accidental), imposing the need of taking into account the possible availability of depots and roads and different
structures of the demand. Likewise, short-term phenomena such as fluctuations in commodity prices (such as oil) or
long-term public policies (such as new toll road concessions) might lead to operational cost increases that should be consid-
ered when deciding the transportation network to be used.

In another context, natural events such as tsunamis, hurricanes or blizzards can produce disastrous effects with unpre-
dictable intensity on populated areas and on the transportation infrastructure. Countries such as Bangladesh and the
Philippines are two typical examples; both of them are regularly hit by hydrological disasters such as floods and typhoons.
According to the Department of Disaster Management of Bangladesh (DDM, 2014), every year around 18% of the country is
flooded, which produces over 5000 causalities and the destruction of more than 7 millions of homes. However, flooded areas
my exceed the 75% of the country in case of severe events (as in 1988, 1998 and 2004). In the case of the Philippines, between
6 and 9 typhoons make landfall every year producing thousands of human losses and incalculable urban destruction; in
November of 2013, typhoon Haiyan produced 6241 causalities and material damage of over 809 millions USD (see
PAGASA, 2014). In these examples, it is crucial to be able to count with a robust system of humanitarian relief facilities that
even in the worst possible scenario can provide assistance with the quickest possible response reducing the number of
human loses after the occurrence of the event.

The Uncapacitated Facility Location Problem (UFL), also referred as the Simple Plant Location Problem, is one of the fun-
damental models in the wide spectrum of Facility Location problems (see, e.g., recent overviews presented in Eiselt and
Marianov (2011), Daskin (2013), and Laporte et al. (2015)). In the classical deterministic version of the UFL one is given
the set of customers, the set of locations, the facility set-up costs and the transportation costs. The goal is to define where
to open facilities and how to allocate the customers to them so that the sum of set-up plus transportation costs is minimized.

In practice, it is usually the case that from the moment that the information is gathered until the moment in which the
solution has to be implemented, some of the data might change with respect to the initial setting. As mentioned above, even
if some (rough) idea about customers and locations is known, changes in demographic, socio-economic, or meteorological
factors can lead to changes in the structure of the demand during the planning horizon, and/or the availability of a given
location to host a facility (even if a facility has been already installed). This means that the solution obtained using a classical
method might become infeasible and a new solution might have to be redefined from scratch. In these cases it would be bet-
ter to recognize the presence of different scenarios for the data and find a solution comprised by first- and second-stage
decisions.

Two well-known approaches to deal with uncertainty in optimization are Two-stage Stochastic Optimization (2SSO) and
Robust Optimization (RO). In 2SSO (see Birge and Louveaux, 2011) the solutions are built in two stages. In the first stage, a
partial collection of decisions is defined which are later on completed (in the second stage), when the true data is revealed.
Hence, the objective is to minimize the cost of the first-stage decisions plus the expected cost of the recourse (second-stage)
decisions. The quality of the solutions provided by this model strongly depends on the accuracy of the random representa-
tion of the parameter values (such as probability distributions) that allow to estimate the second-stage expected cost.
Nonetheless, sometimes such accuracy is not available so the use of RO models dealing with deterministic uncertainty arises
as a suitable alternative (see Kouvelis and Yu, 1997; Bertsimas and Sim, 2004; Ben-Tal et al., 2010). On the one hand these
models do not require assumptions about the distribution of the uncertain input parameters; but on the other hand, they are
usually meant for calculating single-stage decisions that are immune (in a certain sense) to all possible realizations of the
parameter values.

A novel alternative that combines RO and 2SSO is Two-stage Robust Optimization (2SRO); as in RO, no stochasticity of the
parameters is assumed, and as in 2SSO, decisions are taken in two stages. In this case, the cost of the second-stage decision is
computed by looking at the worst-case realization of the data. Therefore, the goal of 2SRO is to find a robust first-stage solu-
tion that minimizes both the first-stage cost plus the worst-case second-stage cost among all possible data outcomes. 2SRO
is a rather generic classification of models; for references on different 2SRO settings we refer the reader to Ben-Tal et al.
(2004) and Zhao and Zeng (2012).

One of the possibilities in the 2SRO framework is Recoverable Robustness (see Liebchen et al., 2009). Recalling our practical
motivation, assume that the facility location and allocation policy is defined in two stages such that we are required to find a
first-stage solution that should be robust against the possible realizations (scenarios) of the input data in a second stage. This
means that the first-stage solution is expected to perform reasonably well, in terms of feasibility and/or optimality, for any
possible realization of the uncertain parameters. An essential element of this approach is the possibility of recovering the
solution built in the first stage (i.e., to modify the previously defined location–allocation policy in order to render it feasible
and/or cheaper) once the uncertainty is resolved in a second stage. The recovery plan is comprised by recovery actions which
are known in advance and whose costs might also depend on the possible scenario. This recovery plan is limited, in the sense
that the effort needed to recover a solution may be limited algorithmically (in terms of how a solution may be modified) and
economically (in terms of the total cost of recovery actions). Therefore, instead of looking for a static solution that is robust
against all possible scenarios without allowing any kind of recovery (which is the case for many RO approaches, see Ben-Tal
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