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structure (which accounts for heterogeneity across observations) is proposed to accommo-
date both time-varying and time-constant (cross-sectional) unobserved heterogeneity in
an ordered discrete-response probability model. A data augmented Markov Chain Monte
Carlo algorithm for non-linear model estimation is developed to facilitate model estima-
tion. The performance of the cross-sectional heterogeneity model and time-varying heter-
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Ordered response model ogeneity model are examined with vehicle crash-injury severity data. The time-varying
Data augmentation heterogeneity model (Markov switching random parameters ordered probit) is found to
Markov Chain Monte Carlo simulation provide the best overall model fit. Two roadway safety states are shown to exist and

roadway segments transition between these two states according to Markov transition
probabilities. The results demonstrate considerable promise for Markov switching models
in a wide variety of applications.
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1. Introduction

Crash injury-severity data are typically reported as discrete data (no-injury, injury, fatality), and these data have been
studied with a variety of ordered and unordered discrete outcome models. Because unobserved heterogeneity is likely to
exist among the population of crash-involved road users (such as differences in risk-taking behavior and physiological fac-
tors), crash-involved vehicles (such as variations in tire wear, braking systems, and crash worthiness), and related roadway/
environmental factors (such as differences in road surface conditions, precipitation and fog affecting visibility), allowing for
the effects of explanatory variables on crash-injury severities to vary across observations is now a critical methodological
consideration in transportation safety analysis (Savolainen et al., 2011; Mannering and Bhat, 2014).

Random parameters models (which account for heterogeneity across observations), such as the mixed logit model and
others, have been widely used to address unobserved heterogeneity for discrete outcome data in general (McFadden and
Train, 2000) and crash-severity data in particular (Milton et al., 2008;Castro et al., 2013). These random parameters models
are well suited to capture cross-sectional heterogeneity, which is really unobserved time-constant heterogeneity because it
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is often approximated from the perspective of the short-term time horizon of cross-sectional data. In fact, random param-
eters and finite mixture (latent class) methods have emerged as the two dominant approaches for characterizing this type of
heterogeneity (Bhat, 1999;Srinivasan, 2002; Hensher and Greene, 2003;Green and Hensher, 2003; Depaire et al., 2008;Shen,
2009; Eluru et al., 2012;Xiong and Mannering, 2013).2

In addition to time-constant heterogeneity, the possibility of time-varying unobserved heterogeneity can also be of con-
cern in crash-injury data. Potentially unobserved factors such as weather conditions and traffic congestion can vary from
period-to-period and substantially impact the severity of roadway accidents. For discrete-outcome data gathered over time,
the time-constant heterogeneity assumption can therefore lead to biased parameter estimates (attenuation bias, Hirose,
2012) and erroneous inferences when variability over time is present.

Hidden-state models such as change-point and Markov switching models have become increasingly popular in capturing
unobserved heterogeneity across time periods by assuming a data-generation process that is governed by hidden regime
transitions. The change-point model is formulated to allow for a number of latent discrete-states that are typically specified
to evolve according to a discrete-time, discrete-state Markov process with constrained transition probabilities (Chib, 1998).
As examples of this approach, Elliott and Shope (2003) used a Bayesian change-point linear model to investigate graduated
driver licensing effects that take into account the uncertainty when these effects begin and end, and whether or not a
“rebound” in crash rates occurs afterward. Kobayashi et al. (2012) presented a multiple-stage change-point model to tackle
selection bias in monitoring data for predicting the deterioration progress of infrastructure systems.

In contrast, Markov switching models (Hamilton, 1989, 1990) restrict the number of hidden states (two hidden states in
most cases) and the process can only move back and forth among these states. Since Chib (1996) proposed a Bayesian Mar-
kov Chain Monte Carlo (MCMC) method to sample the hidden states, Markov switching models have become popular in time
series data and count data applications (Malyshkina et al., 2009;Malyshkina and Mannering, 2010). With regard to discrete
outcome models, Dueker (1999) was among the first to consider Markov-switching heterogeneity in a dynamic ordered pro-
bit framework in his study of discrete changes in the bank prime lending rate. In the crash-severity field, Malyshkina and
Mannering (2009) hypothesized the presence of two states of highway safety resulting from distinct combinations of driv-
ing-environment conditions, driver reactions, and other factors that not only vary across observations but also interact and
change over time (resulting in roadway segments changing from one state to another over time, under specified probabilistic
conditions). Their subsequent empirical analysis, using a Markov-switching multinomial logit model of crash severity, showed
the presence of two states with the less-safe state (the state likely to result in the more severe crash injuries) being highly cor-
related with adverse climatic conditions relating to precipitation, low temperatures, snow, and visibility. It is likely that the
presence (or combined presence) of these less than ideal weather-related conditions (many of which are typically not available
for empirical analyses) results in drivers reacting in different ways as they struggle to estimate the change in crash probabilities,
and develop strategies to modify their speeds and car-following distances accordingly.’

However, previous empirical studies such as Malyshkina and Mannering (2009), only accounted time-varying heteroge-
neity and not cross-sectional heterogeneity. As such, in each time-dependent state, observations from all road-way segments
would be constrained to share the same set of parameters which could be an issue if there is unobserved heterogeneity
across observations. Past exceptions of this constraint include the work of Scott et al. (2005) in their Bayesian application
of hidden Markov models to longitudinal data for comparing the effectiveness of two antipsychotic medications for schizo-
phrenia. Their model structure allows latent health states and longitudinal effects to be simultaneously estimated. To predict
the success of spawning in fish, Holan et al. (2009) derived a Markov switching model with generalized auto-regressive con-
ditional heteroscedastic dynamics in order to provide an eigenvalue predictor to a Bayesian hierarchical linear regression. In
other work, Geweke and Amisano (2011) developed a hierarchical Markov normal mixture model for asset return prediction
in financial markets. The mixture components were designed to be non-Gaussian and be themselves mixtures of normal dis-
tributions, so that they can capture serial correlation as well as conditional heteroscedasticity in financial-return data. Park
(2012) developed a change-point panel-data regression model based on reversible jump MCMC methods. The model is
formulated to deal with political economy debates by allowing regime-specific parameters which depended on time and
observation-specific parameters varied by individuals. The most recent research that has dealt with time-varying
unobserved cross-sectional heterogeneity is that of Hirose (2012). There, the author developed a model that allowed
observation-specific intercepts to vary within each state based on observation-specific Markov transition probabilities,
and validated it through an application of militarized interstate dispute. All of these Markov switching panel modeling

3 The random parameters approach accommodates individual unobserved heterogeneity by placing a distributional assumption on the parameters of
interest, while finite mixture approaches adopt a semiparametric way to impose a discrete distribution assumption which is represented by a specified number
of mass points. In order to precisely depict a “true” distribution of unobserved heterogeneity, which may have possible skewness, kurtosis and multimodality, a
hybrid formulation that incorporates a random parameters structure with a finite mixture model that can account for group-specific as well as within-group
variation has also been undertaken by a number of researchers (Verbeke and Lesaffre, 1996;Allenby et al., 1998; Lenk and DeSarbo, 2000;Yau et al., 2003;
Bujosa et al., 2010; Greene and Hensher, 2013; Xiong and Mannering, 2013).

4 Advances in estimation methods have enabled further exploration of the Markov models. For example, Scott (2002) demonstrated that a forward-backward
recursive Gibbs sampler mixes more rapidly than direct Gibbs sampler which was initially used for hidden Markov models. Based on this approach, Chopin
(2007) developed a Monte Carlo algorithm for estimating a sequentially ordered hidden Markov models.

5 Mannering and Bhat (2014) provide further examples of why two states may exist in highway safety analysis, including the increase in the variance of
driver speeds under adverse versus normal weather conditions and the possible presence and variation in drivers’ risk compensating behavior in response to
changes in roadway conditions.
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