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a b s t r a c t

This paper illustrates a simple procedure for calculating the covariances underlying any
Generalized Extreme Value (GEV) model, based on an appropriate generalization of a result
already established in the literature for the Cross-Nested Logit model (i.e. a particular GEV
model). Specifically, the paper proves that the covariances in any GEV model are always
expressed by a one-dimensional integral, whose integrand function is available in closed
form as a function of the generating function of the GEV model. This integral may be
simulated very easily with a parsimonious computational burden. Two practical examples
are also presented. The first is an application to the CNL model, so as to check the consis-
tency of the proposed method with the results already established in the literature. The
second deals with the calculation of the covariances of the Network GEV (NGEV) model:
notably, the NGEV is the most general type of GEV model available so far, and its covari-
ances have not yet been calculated. On this basis, insights on the domain of the covariances
reproduced by the NGEV model are also presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and background

Generalized Extreme Value (GEV) models (McFadden, 1978) represent a very powerful and practical class of discrete
choice models, commonly and extensively applied to a wide range of transport-related modelling problems (Ben-Akiva
and Lerman, 1985; Cascetta, 2009; Train, 2009).

In general, calculating the covariance matrix of the joint multivariate distribution of the perceived utilities1 underlying a
discrete choice model is crucial for supporting the analyst’s modelling effort. First of all, knowledge of the covariances between
alternatives enables a proper and conscious interpretation of model estimation results. Furthermore, choice contexts exist –
such as route choice and activity-based modelling – where the analyst may formulate prior expectations on the covariances
between alternatives, and therefore it would be desirable to specify a GEV model consistent with these expectations.

For such reasons, theoretical analysis of the covariance structure of GEV models and the corresponding search for
practical tools for the calculation of their covariances are topics of great interest in the literature. The simplest GEV model
able to account for non-zero covariances between alternatives is the Nested Logit (NL) model (Williams, 1977; Daly and
Zachary, 1978), capable of reproducing only covariance structures represented by a tree. Importantly, a closed-form expres-
sion of NL covariances as a function of model parameters (Daganzo and Kusnic, 1993) is available, making its estimation and
application very straightforward.
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1 In the following, the more concise statement of ‘‘covariance between alternatives’’ will be adopted for the sake of simplicity.
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In order to overcome the inherent limitations of the tree-structure of the NL covariances, more complex GEV models
characterized by a network-based choice structure have been proposed, that is the Cross-Nested Logit (CNL) model
(Small, 1987; Vovsha, 1997; Wen and Koppelman, 2001; Papola, 2004; Bierlaire, 2006; Marzano and Papola, 2008) and
the Network GEV (NGEV) model (Daly, 2001; Daly and Bierlaire, 2006; Newman, 2008; Pinjari, 2011; Papola and
Marzano, 2013). Unfortunately, both CNL and NGEV models are characterized by a non closed-form relationship between
model parameters and corresponding covariances. As a consequence, the calculation of covariances in network-based GEV
models is a very complex task, based on time-consuming numerical techniques also for rather simple CNL/NGEV structures.

In this respect, Papola (2004) proposed a closed-form approximation of CNL covariances, which however systematically
overestimates the true CNL covariances, as proved by Abbe et al. (2007) and Marzano and Papola (2008). A recent improve-
ment towards a more effective calculation of CNL covariances was provided by Marzano et al. (2013), who expressed the
covariance between perceived utilities in a CNL model as a function of a one-dimensional integral. Even if this integral still
does not have a closed-form primitive, its numerical calculation is very easy and not time-consuming. Indeed, the main prop-
osition of the present paper, illustrated in Section 3, stems from proper generalization of the approach by Marzano et al.
(2013). By contrast, covariances underlying the NGEV model have not yet been calculated, leading to a considerable missing
step in the literature of GEV models.

In addition, it is worth recalling that the class of GEV models is very wide (Marzano and Daly, 2007; Mattsson et al., 2014)
and also contains models which appear far from the CNL/NGEV framework: this is the case, for instance, of the model
proposed by Karlström (2003). Again, calculating the covariances underlying these models is no trivial task and there are
no studies available in the literature.

Starting from these premises, this paper generalizes the result by Marzano et al. (2013), proving that the covariances under-
lying any GEV model may always be expressed by means of a one-dimensional integral, very easily solvable with very limited
computational effort. Therefore, thanks to this result, calculation of covariances in GEV models becomes a much easier task,
with positive impacts for both researchers and practitioners. A noteworthy side result is that the covariances of the NGEV model
may also be calculated very easily, as shown practically in the paper through a simple example. In addition, this result also
makes it easy to carry out some research developments indicated by Marzano and Papola (2008), with reference to the char-
acteristics of the domain of the covariance matrices reproduced by the NGEV model in contrast with the CNL model.

The paper is structured as follows: Section 2 provides the mathematical background for the calculation of covariances for
the GEV models. Section 3 introduces the main mathematical results of the paper. Section 4 checks the consistency of the
proposed procedure with results already established in the literature for the CNL model. Section 5 illustrates a practical
application to the calculation of the covariances of the NGEV model, and provides insights on the characteristics of the
domain of the covariances reproduced by the NGEV model. Finally, Section 6 draws conclusions and outlines developments
for future research.

2. Calculation of covariances in the GEV model

The covariance Cov[eiej] between a pair of random residuals ei and ej in a discrete choice model, with joint cumulative
distribution function (cdf) Feiej

ðtitjÞ and joint probability density function (pdf) f eiej
ðtitjÞ, and with marginal cdf Fei

ðtiÞ and
Fej
ðtjÞ respectively, can be expressed directly from the formal definition of covariance of a bivariate random variable:
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Equivalently, a result by Hoeffding (1940) states that:

Cov ½eiej� ¼
Z þ1

�1

Z þ1
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It is worth noting that the above expressions do not depend upon any specific assumptions on the distribution of random
residuals, i.e. they are valid for any discrete choice model. In the case of the GEV models, McFadden’s (1978) theorem pro-
vides a direct expression of the joint cdf Fe1 ...en ðt1 . . . tnÞ of the random residuals e1. . .en of a GEV model with n alternatives,
whose generic perceived utility Uj is given by Uj = Vj + ej where Vj = E[Uj], as a function of a l-homogeneous generating
function G(y1, . . ., yn):

Fe1 ...enðt1 . . . tnÞ ¼ e�Gðe�t1 ;...;e�tn Þ ð3Þ

which is a Multivariate Extreme Value (MEV) distribution. From expression (3), the joint and marginal cdf and pdf of any subset
of random residuals may be obtained, thanks to straightforward calculations of proper limits and of first derivatives. In this
respect, McFadden’s (1978) theorem implies the marginal distributions of the random residuals e1. . .en to be Gumbel variables
with same variance p2h0

2/6, h0 = 1/l being the reciprocal of the homogeneous degree l of the generating function G(y1, . . ., yn).
Unfortunately, this approach leads to integrals (1) and/or (2) not in closed-form, meaning that numerical integration (i.e.

simulation) is required. The computational effort required for this double numerical integration is very high even for CNL
structures of limited complexity and practically not applicable to more complex GEV models, such as the NGEV model.
Indeed, this paper introduces a different and much simpler mathematical approach, described in Section 3.
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