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a b s t r a c t

This paper is concerned with the continuous-time Vickrey model, which was first intro-
duced in Vickrey (1969). This model can be described by an ordinary differential equation
(ODE) with a right-hand side which is discontinuous in the unknown variable. Such a for-
mulation induces difficulties with both theoretical analysis and numerical computation.
Moreover it is widely suspected that an explicit solution to this ODE does not exist. In this
paper, we advance the knowledge and understanding of the continuous-time Vickrey
model by reformulating it as a partial differential equation (PDE) and by applying a varia-
tional method to obtain an explicit solution representation. Such an explicit solution is
then shown to be the strong solution to the ODE in full mathematical rigor. Our method-
ology also leads to the notion of generalized Vickrey model (GVM), which allows the flow to
be a distribution, instead of an integrable function. As explained by Han et al. (in press),
this feature of traffic modeling is desirable in the context of analytical dynamic traffic
assignment (DTA). The proposed PDE formulation provides new insights into the physics
of The Vickrey model, which leads to a number of modeling extensions as well as connec-
tion with first-order traffic models such as the Lighthill–Whitham–Richards (LWR) model.
The explicit solution representation also leads to a new computational method, which will
be discussed in an accompanying paper, Han et al. (in press).

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. General background and modeling issue

The Vickrey Model (VM) is one of the most commonly employed link models in the current literature on dynamic traffic
assignment. It was original presented in Vickrey (1969) and discussed subsequently, for example, by Drissi-Kaẗouni and
Hameda-Benchekroun (1992), Heydecker and Addison (1996), Kuwahara and Akamatsu (1997), and Li et al. (2000). The Vick-
rey model is based on the assumption that the queue has negligible size and that the travel time on the link consists of a free-
flow travel time plus a congestion related queuing time. A popular mathematical form of the model is an ordinary differential
equation with discontinuous dependence on the state variable. Such an irregularity leads to several theoretical difficulties: a
classical solution may no longer exist; and it is widely suspected that such an ODE does not admit an explicit solution rep-
resentation. For a general review on ODEs with discontinuous state-dependence, the reader is referred to Filippov (1988) and
Stewart (1990).
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Subsequent research based on the Vickrey model mainly focuses on two aspects: (1) modification of the original model in
continuous-time, and (2) discrete-time counterpart of the model. The first line of research is primarily represented by the
work of Armbruster et al. (2006a), Ban et al. (2011), and Pang et al. (2011). In the study of a dynamic user equilibrium
(DUE) problem with a single bottleneck, Pang et al. (2011) used a linear complementarity system (LCS) as an approximation
to the Vickrey model. Such an LCS does not admit an explicit ODE representation. Nevertheless, it was shown in Ban et al.
(2011) that the LCS yields an absolutely continuous solution that satisfies the complementarity condition almost every-
where. In an attempt to approximate the LCS with an explicit ODE, Ban et al. (2011) proposed the a-model which includes
a smoothing parameter a� 1. The a-model has an explicit ODE representation. Moreover, it exhibits an asymptotic behavior
as a approaches infinity, and the limit is precisely the LCS studied in Pang et al. (2011). The point-queue type dynamic has
been employed also in the context of continuous supply chain networks. Armbruster et al. (2006a) considered an ODE similar
to the a-model: that ODE also contains a smoothing parameter 0 < e� 1. Such a system, which we will subsequently call the
e-model, has been verified extensively against the deterministic discrete event simulations (DDES) by Armbruster et al.
(2006b). Notice that all of the aforementioned continuous-time models deviate from Vickrey’s original model, in exchange
for the theoretical and computational convenience. In addition, the smoothing parameters introduced by the a-model and
the e-model need to be further understood in terms of their underlying physical meanings and modeling implications. A
more detailed review of these models is provided by this paper, in Section 3.

So far, the Vickrey model or the point-queue type models are mainly studied in discrete time and in a numerical frame-
work. Yet, fundamental issues regarding convergence and physical realism of the numerical solutions remain relatively less
understood. Ban et al. (2011) showed that both forward and backward finite-difference schemes for the Vickrey ODE may
yield negative queue lengths and/or negative flows. A few adaptations of the finite-difference algorithms that would avoid
the above problems were proposed, for example, by Armbruster et al. (2006a), Ban et al. (2011), and Pang et al. (2011). How-
ever, these improved algorithms still bear certain numerical limitations. For example, the a-model by Ban et al. (2011) could
potentially lead to negative queues if a forward scheme is used. Furthermore, the forward scheme of the a-model exhibits
conditional stability. The e-model by Armbruster et al. (2006a) could potentially lead to non-physical solutions in some rare
circumstances, see Han et al. (2012b) for an example. One should notice that the performances of both the a-model and the
e-model are greatly influenced by the smoothing parameters chosen, which could potentially add to the complexity and
uncertainty of the corresponding dynamical system.

In view of the above limitations, a mathematically rigorous investigation of the original Vickrey’s model in continuous
time will not only provide new insights into the physics of the model, but also plow new grounds for the analysis and com-
putation of the Vickrey model in the context of DTA. This motivates our two-part work.

1.2. Methodology based on partial differential equations

It has not been noted before that one may analyze the Vickrey model from the approach of partial differential equations.
The PDEs are playing important roles in hydrodynamic traffic flow models such as the Lighthill–Whitham–Richards model
by Lighthill and Whitham (1955) and Richards (1956). A list of selected references on the LWR model is Bressan and Han
(2011a,b), Claudel and Bayen (2010a,b), Daganzo (1994, 1995, 2005), Garavello and Piccoli (2006), Han et al. (2012c), and
Newell (1993). The PDE formulation of the Vickrey model is motivated by the simple observation that the Vickrey model,
like many hydrodynamic models, is based on conservation of cars. Such a principle manifests itself in the generic form

@tqðt; xÞ þ @xf ðt; xÞ ¼ 0 ð1:1Þ

where q(t,x) and f(t,x) denotes respectively the density and flow at time t and location x. The spatial dimension in (1.1) can
be naturally embedded in the Vickrey model due to the presence of a free-flow phase (although our analysis presented in this
paper works even if the free-flow time is zero). The bottleneck located at the exit of a link can be modeled by an x-dependent
flow capacity constraint imposed on the entire link. This requires that the flow is not only a function of density (which is the
case for LWR model), but also a function of the spatial variable x. A more detailed and formal discussion based on the above
observations can be found in Section 4.1.

Once a conservation law describing the point-queue dynamic of the Vickrey model is obtained, we can readily derive a
Hamilton–Jacobi equation by integrating the scalar conservation law. The key component of our analysis is a variational
method for the H–J equation, which is known as the Lax–Hopf formula (Bressan and Han, 2011a; Daganzo, 2005; Evans,
2010; Le Floch, 1988; Lax, 1957). The Lax–Hopf formula was originally proposed as a semi-analytic representation of the
solutions to the scalar conservation law and the Hamilton–Jacobi equation. Its application to first-order traffic flow models
are recently investigated by Aubin et al. (2008), Bressan and Han (2011a,b), Claudel and Bayen (2010a,b), and Daganzo
(2005). The variational approach expresses the viscosity solution to the Hamilton–Jacobi equation as an optimization prob-
lem. However, note that the Lax–Hopf formula does not immediately apply to because the Hamiltonian of our derived H–J
equation has a discontinuous dependence on the spatial variable x. As a consequence, the H–J equation does not admit solu-
tions in the viscosity sense, see Evans (2010) for more details. In other words, one can only expect the solution to be defined
in the distributional sense, i.e. the density q(t,x) can contain dirac-delta which is precisely the mathematical abstraction of
the ‘‘point queue’’. Fortunately, as we show in this paper, it is possible to apply the Lax–Hopf formula in a novel way even
though the resulting density is a distribution. Technical detail of the analysis is presented in Section 4.2.
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