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1. Introduction

Electricity generation from solar and wind resources is volatile
and has limited adaptability to changes in electricity demand
[1]. For a stable operation of the power system there must be a
consistent balance between supply and demand. One option for
achieving this balance is the use of energy storage units which can
contribute substantially to the expansion of Renewable Energy
Sources (RES) and their integration into existing grids [2–4].

Another possible way in which large shares of renewable
energy can be integrated and electricity from RES can be used
efficiently, especially in times of overproduction, is to replace fossil
fuels as the main energy source for heat by converting electricity
into heat (Power-to-Heat, PtH) – resulting in a lower overall
primary energy consumption and lower CO2 emissions [5,6]. If
combined with thermal storage units, PtH storage systems are a
highly flexible option for uncoupling conversion and utilization
[5,7]. These heat storage units can be charged at considerably low
losses during periods with high shares of excess electricity from
RES and provide heat in times of low feed-in [8]. A method for

storing heat energy used in Germany was implemented decades
ago by night storage heating systems in private households. They
operated with low overall efficiencies and subsidized electricity
prices at fixed schedules [9]. Today, private households are still
suitable for the deployment of PtH storage systems due to the high
share of primary energy demand utilized for heating and hot water
supply, the overall changes in the energy system and the
characteristics of today’s heat storage units [10].

If we assume that the electricity price represents the fluctuating
availability of energy, these heat storage systems need to be
operated in a cost-optimal manner. The optimality of a charging
strategy for a PtH storage unit is determined by the overall
electricity acquisition costs. The task of identifying optimal
strategies is closely related to the field of mathematical
optimization and can be described as a minimization problem.
Standard solvers can be applied to calculate solutions, albeit with
tremendously high overheads in computational time. Hence, the
investigation of complex problems may not be possible within a
reasonable time frame.

The specific structure of the minimization problem, based on a
mathematical model of the storage units, allows the development
of a new optimization method which to our knowledge has not yet
been implemented. This work introduces an innovative optimi-
zation algorithm and presents proof of optimality. The solution of
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A B S T R A C T

The integration of large shares of electricity produced by non-dispatchable Renewable Energy Sources

(RES) leads to an increasingly volatile energy generation side, with temporary local overproduction. The

application of energy storage units has the potential to use this excess electricity from RES efficiently and

to prevent curtailment. The objective of this work is to calculate cost-optimal charging strategies for

energy storage units used as buffers. For this purpose, a new mathematical optimization method is

presented that is applicable to general storage-related problems. Due to a tremendous gain in efficiency

of this method compared with standard solvers and proven optimality, calculations of complex problems

as well as a high-resolution sensitivity analysis of multiple system combinations are feasible within a

very short time. As an example technology, Power-to-Heat converters used in combination with thermal

storage units are investigated in detail and optimal system configurations, including storage units with

and without energy losses, are calculated and evaluated. The benefits of a problem-specific approach are

demonstrated by the mathematical simplicity of our approach as well as the general applicability of the

proposed method.
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storage-related optimization problems can now be calculated in a
fraction of the time required by standard algorithms. As a
particular example, we focus on PtH storage units installed in
private households. For these systems, cost-optimal operating
strategies including storage units with thermal energy losses are
described and used for an iterative determination of optimal
system designs.

Beyond this particular field of application, we illustrate the
potential benefits of a problem-specific optimization approach in
terms of mathematical simplicity and computational gain as
compared with standard solvers.

2. Formulation of the optimization problem

The construction of mathematical energy storage models and
the formulation of the corresponding optimization problems, with
and without constant as well as non-constant energy losses, are
described without units in the following paragraphs. We investi-
gate an electrical charging system with an attached storage unit as
a buffer and consider the parameters of electric power consump-
tion and storage capacity. The system needs to be connected to a
virtual electricity grid which provides an altering price signal
reflecting the availability of electricity. A further precondition is
that the energy demand is covered exclusively by the system.

2.1. Formulation without energy losses

Now, we formulate the mathematical model, without energy
losses of the storage unit over time or losses during the conversion
process. We discretize the considered period of time into n

intervals of equal size. The electricity prices are denoted by c1, c2,
. . ., cn and the energy demands are represented by d1, d2, . . .,
dn. Furthermore, we define the amount of energy used to charge
the storage unit for each time-interval by x1, x2, . . ., xn and assume
that the prices and the demands are known. For technical reasons,
the values of x are constrained. Each charge value cannot be
negative (no discharge to the electricity grid or re-electrification)
and has an upper bound C > 0, which implies:

0�xi�C 8 i ¼ 1; . . .;n:

To cover at least the energy demand for each time-interval,
additional constraints are:

Xi

j¼1

dj�
Xi

j¼1

xj 8 i ¼ 1; . . .;n:

The storage level for each time-interval is defined as the difference
between the quantity of charges and the quantity of demands up to
this time-interval. Due to design-related restrictions, the storage
level is bounded above by a maximum storage capacity value
S > 0. Hence, we have:

Xi

j¼1

ðxj�djÞ�S 8 i ¼ 1; . . .;n:

In order to minimize the total costs to cover at least the energy
demand over a period of time of size n, we have to solve the
following optimization problem:

min
Xn

i¼1

ci�xi

subject to 0�xi�C; 8 i ¼ 1; . . .;n

and
Xi

j¼1

dj�
Xi

j¼1

xj�Sþ
Xi

j¼1

dj 8 i ¼ 1; . . .;n:

(LP)

This problem is a special instance of a so-called linear program and
can be solved using standard algorithms for general linear
programs, such as the simplex method or interior point methods
[11].

The problem (LP) is also a special case of the problem (P) which
is described in Appendix A. Contrary to the methods mentioned
above, we utilize the special structure of (P) and hence also of the
related problem (LP) to develop a new algorithm. The basic idea of
the new algorithm is to charge the storage unit during periods
when the acquisition prices are low in order to avoid further
purchases at times when the prices are higher. In addition to the
price levels, the algorithm also takes into account the demand, the
storage level and the maximum charge power for each time-
interval. Therefore, the storage units are charged as much as
possible at times of negative acquisition costs and as much as
required, if the price is non-negative.

The new algorithm to solve the problem (P) is discussed in
detail in Appendix A and also the pseudo-code is presented. Below,
we present the pseudo-code of the new algorithm exemplary fitted
to the problem (LP), if we set ai : = d1 + � � � + di and
bi : = S + (d1 + � � � + di) for all i = 1, . . ., n. If we further define the
permutation s as described in Appendix A, corresponding to the
increasing prices by cs(1) � � � � � cs(n), the pseudo-code of the new
algorithm fitted to the problem (LP) is given by:

Inputs:

ai, bi, ci and the permutation s

Output:

A solution x of the problem (LP)

for k = 1 to n do

M1 maxi<sðkÞ f0; aig
M2 maxi�sðkÞ f0; aig
m mini�sðkÞ fbig
if cs(k) � 0 then

xs(k) min { max {0, M2 �M1}, min {C, m �M1}}

else

xs(k) min {C, m �M1}

end if

for i = s(k), . . ., n do

ai ai � xs(k)

bi bi � xs(k)

end for

end for

The optimality of the new algorithm is proven (in Appendix A)
and is one key element of this work. Furthermore, the source code
of an implementation in Python is included in Appendix C. This
method solves problems even for large n in a fraction of time
required by standard solvers, because at most n2 + 3n floating point
operations and 3/2n2 + 5/2n comparisons to compute a solution
(see: Appendix A) are required.

To demonstrate the efficiency of the new algorithm, we
compare the runtimes between the algorithm and the common
solver linprog in the following. For this comparison, a straightfor-
ward implementation of the new algorithm in Python (cf.
Appendix C) and the linprog implementation as available in
MATLAB 2015b were used. The calculations were performed on a
desktop computer,1 based on input data for the problem (P) as

1 Details: Intel1CoreTM i7-930 Processor (2.80 GHz), 12GB RAM, MATLAB 2015b,

Python 2.7.
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