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A B S T R A C T

Scheduling Lithium-Ion batteries for energy storage applications in power systems requires an accurate
estimate of their state of charge (SOC). The Coulomb counting method is popular in the industry but
remains inaccurate.
This paper presents an intelligent technique for the SOC estimation in Lithium-Ion batteries. The model

is developed offline using adaptive neuro-fuzzy inference systems (ANFIS). It considers the cell nonlinear
characteristics, as supplied by the manufacturer, which provide the relationship between the cell SOC
and open-circuit voltage (OCV) at different temperatures. The manufacturer data are used to model the
cell characteristics by ANFIS in order to yield the cell SOC at any arbitrary OCV and temperature within
the given range. The pack SOC is accordingly estimated.
For the purposes of comparison, the Coulomb counting method is used at the cell level, rather than the

pack level, to estimate the SOC of the battery. Laboratory experiments are conducted on a 5.3 kWh battery
module where measured SOC is compared to Coulomb counting computations at the cell and pack levels.
Results show distinct superiority for the proposed ANFIS technique over the traditional Coulomb
counting method.

ã 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In modern power systems with increasing penetration of
renewable sources, which are characterized with uncertainty and
variability, energy storage becomes a necessity. Besides the basic
function of storage and retrieval, energy storage elements play a
crucial role in providing ancillary services to the hosting system.
Batteries of all technologies represent a key element in many
applications such as portable equipment, electric vehicles, satellite
components, and power systems. The Lithium-Ion battery is a
versatile and promising technology due to the high energy density,
low self-discharge rate, and long life cycle as compared to other
standard battery types. However, over charging or discharging of
Lithium-Ion batteries can cause an irreversible damage to the
battery cells which deteriorates performance and shortens
lifetime. In addition, in many applications, accurate estimation
of the available energy in the battery at a given time instant is
imperative for the proper functionality of the whole system.
Therefore, a reliable and robust estimation algorithm for the state
of charge (SOC) of Lithium-Ion batteries is always sought. The SOC
estimation algorithm is normally programmed in the battery

management system (BMS), and is typically dependent on
monitoring the performance characteristics of the battery.

A large variety of methods of battery SOC estimation is available
in the literature [1–27]. The Coulomb counting method relies on
the integration of battery current with respect to time to account
for the charge added or withdrawn from the battery [1].
Electrochemical impedance spectroscopy can be employed to
assess the battery SOC in case the impedance is correlated with the
energy in the battery [2]. The open-circuit voltage (OCV) of the
battery can be measured during a long rest period, and the
relationship between OCV and SOC can be used for SOC estimation
[3]. Such fundamental methods of SOC estimation are also
combined. In [4], the relationship between battery impedance
and SOC is realized and combined with Coulomb counting for SOC
estimation. Another combination between Coulomb counting and
impedance estimation is presented in [5] for the determination of
available capacity in Lithium-Ion batteries. However, the changes
to battery current, terminal voltage, and internal impedance are
combined to estimate the SOC and remaining capacity of Lithium-
Ion batteries [6]. Nevertheless, lack of accuracy is a common
feature of these techniques for different reasons not limited to the
clear dependency on measurements or estimations of other
variables.

More mathematically exhaustive methods for direct SOC
estimation depend on several variations of Kalman filter [7–13].
Considering linear [7] and nonlinear [8] electrochemical models,
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an extended Kalman filter is used to supress measurement and
process noise, and to eliminate the need to know initial SOC.
Therefore, SOC estimation accuracy is enhanced. An adaptive
extended Kalman filter is employed to estimate the OCV, which is
used in turn to estimate the SOC [9]. In [10], an extended Kalman
filter is used to determine the model parameters of the Lithium-Ion
battery, and an adaptive extended Kalman filter is used to estimate
the SOC. The unscented Kalman filter is proven in [11] to accurately
identify nonlinear parameters of Lithium-Ion batteries leading to
SOC estimation; an adaptive version of the same filter is also used
for the same purpose in [12]. The large computational burden is
usually an obstacle for feasible implementation of such methods; it
also reflects on the cost of the BMS, and hence, the whole system.

Artificial intelligence is also exploited to estimate the remaining
capacity and SOC of Lithium-Ion batteries. Two different archi-
tectures of artificial neural networks (ANN) are trained based on
data gathered through 480 charge/discharge cycles in order to
assess the capacity fade and SOC of commercial Lithium-Ion
batteries [13]. In [14], fuzzy logic, neural networks, and genetic
algorithms are combined together in a technique for battery SOC
estimation. A number of small fuzzy neural networks are merged
into a hierarchical learning structure in order to overcome the
problem of large number of inputs. Genetic algorithms are used to
tune the parameters of the control inputs and ANN weights;
whereas, experimental data were used for training [14]. The
hierarchical fuzzy neural networks decrease the number of free
parameters which appear with traditional ANN, and hence reduce
the training time and effort [15]. A combination of ANN and
extended Kalman filter is also implemented to estimate the SOC of
Lithium-Ion batteries where radial basis function networks [16]
and multilayer perceptron networks [17] are both used. The ANN is
trained offline on experimental measurements, while the Kalman
filter eliminates the data noise. In [18], radial basis function
networks are combined with an extended H1 filter to perform the
task of SOC estimation in Lithium-Ion batteries.

Various versions of adaptive neuro-fuzzy inference systems
(ANFIS) have been implemented in the literature in the context of
battery SOC estimation [19–25]. All such techniques operate at the
pack level rather than the cell level; in addition, none of them
considers the cell characteristics as supplied by the manufacturer.
Since ANFIS is well known to suffer from the curse of
dimensionality, large number of inputs is likely to hinder the
estimation performance [20,21,23]. Some methods rely on the
value of the internal resistance of the battery which requires either
a measuring instrument or an accurate estimator [22] and [24].
Extensive experimentation is sometimes required to obtain the
ANFIS training dataset [21] and [24]. The technique presented in
[25] updates the SOC value, which requires a good guess to start
and suffers from long idle periods.

Several automatic control theorems are utilized to develop
algorithms for the estimation of battery SOC. A proportional
integral (PI) observer is developed to estimate the SOC in Lithium-
Ion battery based on the resistive capacitive (RC) electrochemical
model of the battery [26]. After the nonlinear battery model is
linearized, an adaptive geometric observer could establish the
exponential stability of the error dynamics and parameter
estimation [27]; the geometric observer is applied to estimate
the SOC of Lithium-Ion batteries. In [28], another observer is
designed to include the nonlinear relationship between SOC and
OCV, and to observe the RC model of the battery leading to SOC
estimation. Using linear matrix inequality (LMI), a robust H1 filter
is developed for the estimation of SOC in Lithium-Ion batteries
[29]. Lyapunov theory assures the stability of an adaptive observer
used for the estimation of SOC in Lithium-Ion batteries with no
need for a priori knowledge of the model parameters [30]. Under
extreme operating conditions of the battery, estimation techniques

based on control theory are expected to face technical difficulties
including poor stability and lack of accuracy.

An online SOC estimation technique is proposed by predicting
the terminal voltage of the Lithium-Ion battery as a result of an
impulse response test [31]. A fast particle filtering algorithm is
employed for real-time estimation of SOC and discharge time in
Lithium-Ion batteries [32]. The mapping between SOC and OCV is
found most critical in estimating battery SOC; accordingly, an
adaptive estimation algorithm is developed and experimentally
tested on Lithium-Ion batteries [33]. Battery aging is accounted for
in SOC estimation by comparing the capacity error with Coulomb
counting and look-up Table methods [34]. Conclusively, it appears
that the available SOC estimation techniques are either inaccurate
or computationally exhaustive. The literature obviously lacks an
SOC estimation method which is simple, accurate, and easy to
implement.

This paper presents an estimation technique for SOC in Lithium-
Ion batteries centred on adaptive neuro-fuzzy inference systems
(ANFIS) modeling of cell characteristics. Based on the manufactur-
er data of Lithium-Ion cells, an ANFIS model is offline trained and
developed to yield the cell SOC at any given temperature and OCV
within the training range. The cell SOC is estimated while the
battery is at rest, and the Coulomb counting approach is adopted at
the cell level. The cell SOC is evaluated again at the following rest
condition of the battery in order to eliminate the effect of error
accumulation during Coulomb counting. The cell SOC is used to
estimate the energy available in the cell, which is added up to find
the pack energy and SOC.

The traditional Coulomb counting method is preferred by most
BMS manufacturers due to its simplicity and ease of implementa-
tion; however, the method is inaccurate since it assumes all cells
work at the same voltage and temperature. Nevertheless, the
proposed technique accounts for the difference in cell voltages and
temperatures, and yields more accurate estimation for the battery
SOC. The technique could be easily implemented on an 8-bit
microcontroller since it is basically dependent on a fuzzy model
[35–37]. As compared to SOC techniques available in the literature,
the proposed method has the following advantages:

1. The discrepancy on cell voltages and temperatures is taken into
account.

2. Cells are modeled based on the manufacturer supplied
characteristics.

3. Simplicity and straightforwardness due to reliance on Coulomb
counting.

4. The routine is easy to implement, and is not mathematically
exhaustive.

5. No extra sensors or measurements are required.
6. SOC estimation is noticeably improved compared to traditional

Coulomb counting.

2. Problem statement

The traditional Coulomb counting technique for battery SOC
estimation is preferred by most BMS manufacturers due to its
simplicity and ease of implementation. However, the technique is
inaccurate because of a number of reasons, of which the
assumption that all cells are balanced is of utmost effect. In
reality, battery cells usually have different levels of voltage and
temperature, under all modes of operation, which makes their
individual SOC vary. The manufacturer typically supplies the
relationship between cell SOC and OCV at different temperatures
based on prototype laboratory testing. Such characteristics assure
that SOCs of individual cells vary as the cell OCV and/or working
temperature differ.
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