Computers & Industrial Engineering 100 (2016) 52-57

journal homepage: www.elsevier.com/locate/caie

Contents lists available at ScienceDirect

Computers & Industrial Engineering

o

computers &
industrial engineering

Short Communication

A tabu search with gradual evolution process

Yoshinori Suzuki *, Juan David Cortes

@ CrossMark

Department of Supply Chain & Information Systems, College of Business, lowa State University, 2340 Gerdin Business Building, Ames, IA 50011-1350, USA

ARTICLE INFO ABSTRACT

Article history:

Received 10 June 2016

Received in revised form 8 August 2016
Accepted 9 August 2016

Available online 10 August 2016

Keywords:
Optimization
Metaheuristic
Tabu search
Evolution
Virus

We investigate a new framework for executing tabu search (TS). A unique aspect of this framework is that
it performs multiple small-scale TS runs iteratively to identify the most promising area of the feasible
region before executing the final TS run. The basic idea is inspired by recent viral transmission incidents,
which showed that a virus would often go through an indirect and gradual evolution process to transform
itself into a new form. Numerical experiments conducted with randomly-generated vehicle routing
instances demonstrate interesting results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Tabu search (TS) is one of the most widely used metaheuristics
in practice and academic research, especially for solving difficult
combinatorial problems (e.g., traveling-salesman, vehicle routing,
sequencing, network-design, and spanning tree problems) (Toth
& Vigo, 2003). Past studies have investigated the question of how
to improve the effectiveness (solution quality) and efficiency (solu-
tion speed) of TS by exploring a variety of diversification and inten-
sification strategies, neighborhood definitions, tabu-list updating
procedures, and termination criteria (Gendreau & Potvin, 2010;
Ho, Yang, Ni, & Wong, 2001). To the best of our knowledge, how-
ever, none of these past studies have explored the question of
how the TS performance can be improved by changing the nature
(e.g., size) of the problem during the optimization run. Changing
the problem characteristics during the optimization run can be
potentially beneficial, as it can provide the information that would
be difficult to obtain under the conventional TS execution method
(where the nature of the problem is fixed), which may be used to
enhance the TS performance. We investigate a new way of execut-
ing TS that changes the nature of the problem dynamically during
the optimization run, and contrast its performance with that of a
well-known TS procedure.

* Corresponding author.
E-mail addresses: ysuzuki@iastate.edu (Y. Suzuki), davidco@iastate.edu
(J.D. Cortes).

http://dx.doi.org/10.1016/j.cie.2016.08.004
0360-8352/© 2016 Elsevier Ltd. All rights reserved.

2. Basic idea and related literature
2.1. General idea

The basic idea of our approach (framework) is inspired by the
viral transmission incidents observed between swine (pig) and
avian (bird) flues several years ago. These incidents showed that
while influenza A virus (bird flu) in its original form can hardly
infect human beings, it can transform itself into a new form which
can pose threats to humans if it goes through pigs. In other words,
while moving directly from birds to humans is an infeasible path
for the flu, moving indirectly from birds to humans through pigs
is a feasible path (see Fig. 1). This means that, although a virus
residing in one environment (E;) cannot move to a very different
environment (Ey;) directly, it may be able to eventually transform
itself into a new form that can reside in Ey, if, for example, it goes
through an indirect transmission path: E; - E; — ...
Em+1 — ... = Ey, where E,, and E,.; represent different, but
similar, living environments (hosts populations) for the virus.
Our approach is based on this idea of sequential (and gradual) viral
transmission and evolution.

S Ey —

2.2. Related literature

A limited number of studies have developed algorithms that
involve the emulation of viral movements among host populations,
most of which relied on the use of genetic algorithms (GAs).
Arakawa, Kubota, and Fukuda (1996) implemented a virus-based
GA to the trajectory generation problem, particularly with applica-
tion to robotics. The algorithm divides the population into several
subpopulations (virus and host populations), wherein each virus

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.08.004&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.08.004
mailto:ysuzuki@iastate.edu
mailto:davidco@iastate.edu
http://dx.doi.org/10.1016/j.cie.2016.08.004
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

Y. Suzuki,].D. Cortes/Computers & Industrial Engineering 100 (2016) 52-57 53

Bird

Infeasible path
(between dissimilar environments)

Fig. 1. Viral transmission paths.

subpopulation undergoes the processes of crossover, mutation,
infection, selection, and cross-population migration. Chun, Jung,
and Hahn (1998) developed and compared an Immune algorithm
(IA), an evolution strategy (ES), and a GA. Their approach, which
heavily relies on stochastic transition and movements of viruses,
is based on the genetic abilities of viruses to cope with invading
antigens and the production of antibodies to exclude the antigens.
Cortes, Onieva, Munuzuri, and Guadix (2013) developed a virus-
inspired algorithm, designed specifically for the elevator dispatch-
ing problem, in which each cell may be infected with a virus based
on a probability, where the infection level of each cell depends on a
given antigen level.

Some studies developed virus-like algorithms specifically for
routing problems. Kanoh and Tsukahara (2010) proposed a variant
of a GA for the capacitated vehicle routing problem (CVRP) which
updates and maintains a population of k viruses (each of which
is a single route) with a better likelihood of producing quality fea-
sible solutions. Each of these k viruses has the ability to infect solu-
tions to make part of them resemble the virus, so that, after several
iterations, the method leads to improved solutions. Prins (2004)
presented a viral-movement like hybrid GA for the distance-
constrained CVRP that initially solves a problem by relaxing the
vehicle capacity and maximum tour length constraints, and subse-
quently executes a second stage optimization run consisting of an
optimal splitting procedure to generate competitive solutions with
feasible tours. Suryadi and Kandi (2012) developed a viral systems
algorithm emulating the cellular infection process to solve the
traveling salesman problem. They proposed two moves (i.e. lytic
replication and lysogenic replication) to change the locations (i.e.,
sequence) of the nodes within the solution.

While valuable in many respects, none of the above studies has
developed a framework specifically for TS that mimics the viral
infection process, nor proposed a framework that solves a given
problem by emulating an indirect, gradual transformation process
of certain flu viruses. This study fills this gap in the literature by
investigating a new framework that combines TS and the afore-
mentioned gradual viral transformation process. Given the wide-
spread use of TS among researchers and practitioners, there
should be considerable value in developing such a framework.

3. The framework
3.1. Solution strategy

First, we create a series of problems {P{,P,,Ps,...,Pmy,....Pu},
where Py, is the focal (original) problem to be solved (which is

difficult to solve) and Py, Py, ... represent the problems similar
to, but less complex than, Py, (their problem size, denoted n, is
smaller than that of Py;). The problems are numbered such that
P, has a smaller n than P,,.;. n of two adjacent problems (P,, and
P.+1) are similar, but those of P; and Py, are substantially different
(i.e., P; is substantially easier to solve than P,;). Second, we solve P,
to either optimality or near optimality (given that P; is easy to
solve, this can be done, for example, by using enumeration). We
denote the best solution found for P; as S;. Third, we solve P, via
the method that can perform an in-depth neighborhood search
(TS) by using S; (or its slightly modified version) as the initial solu-
tion. Fourth, we repeat the above process (i.e., solve P,;, by running
TS which uses S;,_1 as the initial solution) many times, successively
moving from one problem to another, until we reach and solve the
focal problem Py.!

Note that, in essence, our framework performs the following set
of actions: (i) generate an optimal (or near-optimal) solution to P,
the simplified form of Py, (denoted S,), (ii) transmit S, to a similar,
but more complex, environment (P,) and let it evolve within the
new environment until it transforms itself into another form that
performs well within this new environment (S,), and (iii) repeat
this transmission (evolution) process many times until the solution
transforms itself into a form that performs well in the final envi-
ronment (Sy) (see Fig. 2 for the outline of our framework). Also
note that, although executing the above framework may seem time
consuming, as it requires a series of TS runs, its actual run time
may not be very long for two reasons. First, in most TS runs n is
much smaller than that of Py, so that these runs would not take
long time. Second, since P,,,_; and P,, are “similar” problems, mean-
ing that the best solution found for P,;,_; is a good candidate for the
optimal solution of P, the TS run for P,,, (which uses a proxy of the
P,_1 best solution as the initial solution) should, in many cases,
converge to quality solutions quickly.?

3.2. Diversification and intensification

Although in the previous paragraph we argued that each TS run
is expected to find quality solutions quickly in the vicinity of the
initial solution, this does not mean that we merely focus on search-
ing the areas near the initial solution in each TS run. Since the ini-
tial solution may not always be located near the optimal solution,
and since it is known that diversification is a useful strategy for
finding quality solutions, we perform multiple diversifications in
each TS run. However, because executing many diversifications
in each TS run can be time-consuming, we employ an approach
which performs intensive (a larger number of) diversifications
when n is small, but performs a limited number of diversifications
as n grows larger. There are two reasons for this.

First, from the standpoint of finding quality solutions, we may
not need to perform as many diversifications when m is large
(i.e., when n is large) as when m is small (when n is small). Note
that, given that the change in n from P, to P,,.; must always be
“gradual” (i.e., the difference in n between P, and P,.; is small,

1 Strictly speaking, the sequence Pj,....Pn,...Py needs not be ascending in
problem complexity (i.e., problem size needs not grow with m). The sequence can
also be descending in problem complexity (i.e., evolutionary process can start with a
more complex problem and use its best solution as the initial solution to solve the
next, less complex, problem). This latter approach, however, would generally be
difficult to implement because of higher computational requirements.

2 Though our approach may look similar to dynamic programming (DP), they are
fundamentally different. In DP, the original problem is divided into multiple non-
overlapping sub-problems (stages), each of which is solved to determine the best
solution for a multistage process. Our approach, in contrast, does not divide the
original problem into stages, but instead creates multiple overlapping, interconnected
problems (each of which is a reduced form representation of the original problem)
and solves them sequentially to obtain a good candidate initial solution for the
original problem.

Download English Version:

https://daneshyari.com/en/article/1133156

Download Persian Version:

https://daneshyari.com/article/1133156

Daneshyari.com

https://daneshyari.com/en/article/1133156
https://daneshyari.com/article/1133156
https://daneshyari.com

