
Parallel metaheuristics for the cyclic flow shop scheduling problem

Wojciech Bo _zejko a,⇑, Mariusz Uchroński b, Mieczysław Wodecki c

aDepartment of Control Systems and Mechatronics, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland
bWrocław Centre of Networking and Supercomputing, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
c Institute of Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland

a r t i c l e i n f o

Article history:
Received 11 November 2015
Received in revised form 5 March 2016
Accepted 7 March 2016
Available online 16 March 2016

Keywords:
Scheduling
Parallel algorithm
Cyclic flow shop problem
Block properties

a b s t r a c t

In the paper there was proposed a new method of detection of block properties for cyclic flow shop prob-
lem with machine setups that uses patterns designated for each machine by solving the adequate trav-
eling salesman problem. The proposed method is intended to be run in the environment of shared
memory in concurrent computations, such as coprocessors, GPU, or machines with multi-core CPUs.
The proposed method of accelerating the review of the neighborhood through the use of the blocks
was tested on two parallel metaheuristics: tabu search and simulated annealing.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there has been observed a growing interest in cyclic
problems of tasks scheduling in both the environment of theorists
dealing with discrete optimization problems and in the environ-
ment of practitioners in the industry. Cyclic production is, in fact,
a very effective method in modern flexible manufacturing system
as it significantly simplifies control, i.e. a fixed schedule is
repeated in many periods. The most important benefit of the
method is its ability to produce, in predetermined intervals,
multi-assortment product mix resulting from customer demand.
This process provides not only systematic replenishment of usu-
ally relatively small inventory of customers but also generates a
systematic demand for both semi-finished or raw materials and
materials obtained from suppliers. This method simplifies the
management of supply chain. Another very important advantage
of cyclic production is relatively easy detection of anomalies dur-
ing manufacturing process which may indicate a deterioration of
either the quality parameters of the production system or manu-
factured products themselves.

In the world literature there are many studies concerning vari-
ous aspects of cyclic control in enterprises which manufacture
products on a mass scale. There are examples of application of cyc-
lic scheduling in various spheres of industry, transport and logis-
tics (e.g. Gertsbakh & Serafini, 1991; Kats & Levner, 2010;

Mendez, Cerda, Grossmann, Harjunkoski, & Fahl, 2006; Pinedo,
2005, 2008; Pinto, Barbosa-Póvoa, & Novais, 2005). Unfortunately,
the existing models and calculation tools enable determination of
the optimal (minimizing cycle time) control for production sys-
tems executing only a small number of tasks. In the work, there
is considered a cyclic flow shop problem with setup times. Strong
NP-hardness of many simple versions of cyclic scheduling prob-
lems, in particular, of the considered problem, limits the scope of
applications of exact algorithms to instances with a small number
of tasks, nevertheless, in this context of minimizing the cycle time,
both the design and the use of exact algorithms seems to be fully
justified (Brucker, Burke, & Groenemeyer, 2012). However, due to
the NP-hardness, in determination of satisfactory solutions there
are commonly fast approximate algorithms used based on local
search techniques, for example: simulated annealing (in parallel
version – Bo _zejko, Pempera, & Wodecki, 2015) or tabu search
(Bo _zejko, Uchron_ski, & Wodecki, 2015, 2014). Methods of this type
are usually based on a two-level decomposition of the problem:
the first – determining the optimal sequence of tasks (upper level)
and the second – multiple determining the minimum value of cri-
teria for a given sequence of tasks (bottom level). In case of the
conventional, non-cyclic scheduling problem, solution to the lower
level can be obtained in a time-efficient manner by analyzing a
specific graph. However, in case of the defined, in this paper, prob-
lem obtaining the solution to the lower level is a relatively time-
consuming process since, in general, it requires the solution of a
certain linear programming problem. Therefore, any special prop-
erties, including those that enable obtaining more efficient calcula-
tion of the cycle time, the search schedule and reduction of the

http://dx.doi.org/10.1016/j.cie.2016.03.008
0360-8352/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: wojciech.bozejko@pwr.edu.pl (W. Bo _zejko), mariusz.uchrons-

ki@pwr.edu.pl (M. Uchroński), mwd@ii.uni.wroc.pl (M. Wodecki).

Computers & Industrial Engineering 95 (2016) 156–163

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.03.008&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.03.008
mailto:wojciech.bozejko@pwr.edu.pl
mailto:mariusz.uchronski@pwr.edu.pl
mailto:mariusz.uchronski@pwr.edu.pl
mailto:mwd@ii.uni.wroc.pl
http://dx.doi.org/10.1016/j.cie.2016.03.008
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


multiplicity of the locally browsed neighborhood or acceleration of
its browse, are very desirable.

In this paper, we propose the use of new properties, the so-
called blocks which reduce the number of solutions viewed
while generating the neighborhood executed by local search
algorithms, such as tabu search or simulated annealing. Determi-
nation of the blocks can be performed both sequentially and
simultaneously, using multiprocessor calculations environment.
Appropriate methods of construction are shown in this work
with the use of model PRAM machine equipment, which for
many years, has not only been the standard for the theoretical
verification of the computational complexity of the parallel algo-
rithms but also close to practice approximation of contemporary
parallel architectures.

2. Problem description

The cyclic manufacturing process, considered in the work, can
be formulated as follows: there is a set of n tasks given
J ¼ f1;2; . . . ;ng, which are to be performed in cycles (repeatedly)
on machines from the setM¼ f1;2; . . . ;mg. A given task should be
executed in a sequence, on each of the m machines 1;2; . . . ;m, in a
technological order. The task j 2 J is a sequence of m operations
O1;j;O2;j; . . . ;Om;j. The operation Ok;j corresponds to execution of
task j on machine k, in time pk;j (k ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n). After
the completion of a certain operation and before the start of the
next operation there should be setups of a machine performed.
Let ski;j ðk 2M; i– j i; j 2 J Þ be the setup time between the opera-
tion Ok;i and Ok;j.

A set of tasks executed in a single cycle is called PMS (minimal
part set). MPSs are processed cyclically one after another. The order
of tasks is to be determined (the same on each machine) in such a
way which minimizes the cycle time, i.e. the time of commence-
ment of the tasks from the set J in the next cycle. The following
restrictions must be fulfilled:

(a) each operation can be executed only by one machine,
(b) none of the machines can execute more than one operation

at the same time,
(c) the technological order of operations must be preserved,
(d) the execution of any operation cannot be interrupted before

its completion,
(e) each machine, between successively performed operations,

requires setup,
(f) each operation is executed sequentially (in successive MPSs)

after the completion of cycle time.

The considered problem relies in determination of the moments
of starting of the tasks’ execution on machines that meet the lim-
itations (a)–(f), so that the cycle time (the time at which the task is
executed in the next MPS) was minimal. Let us assume that in each
of the MPSs, on each machine, the tasks are executed in the same
order. Thus, in the cyclic schedule the order of tasks’ execution on
the machines can be represented by a permutation of the tasks in
the first MPS. In fact, on its basis, we can determine the starting
moments of tasks’ execution on the machines in the first MPS.
Increasing them by a multiplication of the cycle time, one gets
the starting moments of tasks’ execution in any of the MPS (the
starting moment of execution of any operations in the next MPS
should be increased by cycle time). Let U be the set of all permuta-
tions of the elements from the set of tasks J . Therefore, the consid-
ered in the work problem boils down to determining of
permutations of tasks (elements of the set U) which minimizes
the length of the cycle time. In short, this problem will be denoted
by CFS.

3. Mathematical model

Let ½Sk�m�n be the matrix of starting moments of tasks’ execution

of kth MPS (for the established order p 2 U), where Ski;j denotes the
starting moment of execution of task j on the machine i. We
assume that tasks in the next MPS-s are carried out cyclically. This
indicates that there is a constant TðpÞ (period) such that

Skþ1i;pðjÞ ¼ Ski;pðjÞ þ TðpÞ; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n; k ¼ 1;2; . . . ð1Þ
Period TðpÞ undoubtedly depends on permutation p and is called
time period of the system. The minimum value TðpÞ, for a fixed p,
will be called minimum cycle time and will be denoted by T�ðpÞ.
Since the order of tasks within the given MPS is the same, it is suf-
ficient just to designate the order of tasks p for a single (the first)
MPS and move it by the quantity k � TðpÞ; k ¼ 1;2; . . . on the time-
line. For the established order of execution of tasks p 2 U, optimum
value of cycle time T�ðpÞ can be determined by solving the follow-
ing optimization task:

T�ðpÞ ¼minfT : T 2 Rg; ð2Þ

Si;pðjÞ þ pi;pðjÞ 6 Siþ1;pðjÞ; i ¼ 1; . . . ;m� 1; j ¼ 1; . . . ;n; ð3Þ

Si;pðjÞ þ pi;pðjÞ þ spðj;pðjþ1ÞÞ 6 Si;pðjþ1Þ; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n� 1;

ð4Þ

Si;pðnÞ þ pi;pðnÞ þ spðn;pð1ÞÞ 6 Si;pð1Þ þ T; i ¼ 1; . . . ;m; ð5Þ

Siþ1;pðnÞ 6 Si;pð1Þ þ T; i ¼ 1; . . . ;m� 1: ð6Þ
Without loss of generality, it is possible to assume that the

starting moment of the first task’s execution on the first machine
is S1;pð1Þ ¼ 0. For any order of tasks in the first MPS and solving
the above linear programming task, it is possible to determine
the minimum cycle time in polynomial time. In case of an exact
algorithm (complete overview) the solution to CFS problem should
therefore be done for each of n! permutation – element of a set U.
The next chapter includes a presentation of an approximate solu-
tions method to the considered in this work problem.

4. Solution method

In many heuristic algorithms solutions to NP-hard problems are
constituted by reviewed neighborhoods, i.e. subsets of solution
space. In case where solutions to problems are permutations
neighborhoods are usually generated by insert or swap type moves
and their combinations (Bo _zejko & Wodecki, 2007). They consist in
changing positions of elements in the permutation. The number of
elements of such a neighborhood is at least nðn� 1Þ=2, where n is
the size of the data. In practical applications (with large n), viewing
the neighborhood is the most time consuming element of the algo-
rithm. The description of computational experiments presented in
the literature shows that the number of iterations of the algorithm
has a direct impact on the quality of designated solutions. Hence,
there is observed the search for methods accelerating the work
of a single iteration of the algorithm. One of them is the reduction
of the number of the neighborhood elements, their parallel gener-
ation and viewing. In case of tasks scheduling problems on multi-
ple machines with the minimization of time of tasks’ execution
(Cmax) there are ‘blocks eliminating properties’ (Grabowski &
Wodecki, 2004) successfully used. Similar properties are imple-
mented in the algorithm solving the problem of determining min-
imum cycle time, more specifically – a minimum time of a single
machine run. The properties enable elimination of elements from
the neighborhood that do not directly provide the improvement

W. Bo _zejko et al. / Computers & Industrial Engineering 95 (2016) 156–163 157



Download English Version:

https://daneshyari.com/en/article/1133229

Download Persian Version:

https://daneshyari.com/article/1133229

Daneshyari.com

https://daneshyari.com/en/article/1133229
https://daneshyari.com/article/1133229
https://daneshyari.com

