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a b s t r a c t

This paper presents the distributed no-wait flowshop scheduling problem (DNFSP), which is the first
attempt in the literature to solve this key problem faced by the manufacturing industry. A mixed integer
programming (MIP) mathematical model and an iterated cocktail greedy (ICG) algorithm are developed
for solving this problem of how to minimize the makespan among multiple plants. The ICG algorithm pre-
sented herein is an enhanced version of the iterated greedy algorithm, and it includes two self-tuning
mechanisms and a cocktail destruction mechanism. Exhaustive computational experiments and statisti-
cal analyses show that the proposed ICG algorithm is a highly efficient approach that provides a practical
means for solving the challenging DNFSP.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the competitive trend of globalization, distributed
multisite production systems are widely used in the manufactur-
ing industry. Although various types of distributed production sys-
tems have been broadly applied in diverse industries, the
scheduling problems associated with these systems have been ana-
lyzed theoretically to a lesser extent, as compared with the classi-
cal scheduling problem. Conversely, numerous variants of the
flowshop scheduling problem (FSP) have been studied (Yenisey &
Yagmahan, 2014) due to the nature of distinct industrial processes.
This study addresses a key branch of FSPs, the distributed no-wait
FSP (DNFSP), which is a crucial aspect of distributed scheduling
problems that is applied in myriad businesses, including the chem-
ical, plastic, metal, electronic, food-processing, and pharmaceutical
industries.

DNFSP contains n jobs in the set N = {1, . . . , n} that must be
assigned to one factory out of f identical factories in the set F =
{1, . . . , f}, in which each factory contains the same m machines in
the set M = {1, . . . ,m} that must be set up in series. The jobs are
processed using the same route, and no interruption is permitted,
either on or between any two consecutive machines in an assigned
factory in the route. The production sequence (or permutation), in
which the jobs assigned to a given factory go through the first

machine, is maintained throughout the factory. All the jobs are
available for processing at the beginning of the planning horizon
(i.e., at time zero), and the processing time required for Job j
(j e N) on Machine i (i eM) is pj,i, which is identical for every fac-
tory. The objective is to allocate jobs to a set of factories and deter-
mine the corresponding production sequences in each factory,
thereby minimizing the maximal completion time of the last jobs
among all factories (i.e., the makespan), which is the most-
studied optimization criterion. Following the conventional three-
field notation established by Pinedo (2012), the addressed problem
can be designated as DFm|prmu, nwt|Cmax.

If the number of factories equals one, or if all the jobs are
assigned to a single factory, then the DFm|prmu, nwt|Cmax problem
reduces to a corresponding no-wait FSP (i.e., Fm|prmu, nwt|Cmax),
which is strongly NP-hard when the number of machines is more
than two (Rock, 1984). Therefore, we readily conclude that the
DFm|prmu, nwt|Cmax problem is also strongly NP-hard and cannot
be easily solved using a traditional mathematical model. To obtain
high-quality solutions quickly and with acceptable memory usage,
herein we develop an iterated cocktail greedy (ICG) algorithm that
includes two self-tuning mechanisms and a cocktail destruction
mechanism for solving the DFm|prmu, nwt|Cmax problem.

The remainder of this paper is organized as follows. After a brief
introduction, Section 2 reviews the literature on DNFSP. Section 3
presents a mixed integer programming (MIP) mathematical model.
Section 4 offers the newly developed ICG algorithm. Section 5
reports the results of the computational and statistical evaluation
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conducted on two benchmark problem sets of instances. Finally,
Section 6 brings together our conclusions and recommendations
for a possible extension of this work in future research.

2. Literature review

In order to enhance the reliability and usage of resources in
multisite production systems, researchers and industrialists have
recently increased their focus on developing effective and efficient
optimization algorithms designed for solving distributed schedul-
ing problems. Existing algorithms on distributed scheduling can
be broadly classified into three types: exact methods, agent-
based algorithms, and heuristic-based algorithms. Because most
cases of distributed scheduling problems are considered to be
NP-hard, the exact methods (Hammami & Frien, 2013; Naderi &
Ruiz, 2010; Thomas, Singh, Krishnamoorthy, & Venkateswaran,
2013) in the literature cannot typically be used to attain an optimal
solution for a practical-sized distributed scheduling problem
within a reasonable computational time. Consequently, studies
on this topic have recently concentrated on developing agent-
based algorithms and heuristic-based algorithms.

The agent-based algorithm executes distributed scheduling
problems through negotiation and coordination between all
agents, in which each agent is responsible for searching a single
factory’s schedule to determine a global solution (Chan & Chan,
2004). A few effective and efficient agent-based algorithms have
been proposed for solving various distributed scheduling problems
in recent decades. For instance, Lim and Tan (2013) developed a
multi-agent system that integrates process planning and
production-scheduling activities across multisite manufacturing
facilities to optimize resource usage. By actively negotiating
between agents, these agent-based algorithms obtain favorable
global schedules for distinct distributed scheduling problems.
The computational and statistical results of the aforementioned
studies indicate that these agent-based algorithms are able to effi-
ciently handle certain complex distributed scheduling problems.

Apart from developing agent-based algorithms, effective and
efficient heuristic-based algorithms must also be developed for
addressing the distributed scheduling problem. Noteworthy
heuristic-based algorithms developed for this problem to date
include constructive heuristics (Gao & Chen, 2011a, 2011b;
Naderi & Ruiz, 2010; Ruiz & Naderi, 2009), variable neighborhood
descent heuristics (Ruiz & Naderi, 2009), simulated annealing algo-
rithms (DiNatale & Stankovic, 1995), genetic algorithms (Gao &
Chen, 2011a, 2011b), Tabu search algorithms (Gao, Chen, & Deng,
2013), neural networks (Jia, Fuh, Nee, & Zheng, 2002), hybrid algo-
rithms (Chan, Prakash, Ma, & Wong, 2013), iterated greedy (IG)
algorithms (Lin, Ying, & Huang, 2013), scatter search (SS) algorithm
(Naderi & Ruiz, 2014), and bounded-search iterated greedy (BSIG)
algorithm (Fernandez-Viagas & Framinan, 2015). During the past
decade, researchers and industrialists have confirmed the effec-
tiveness and efficiency of heuristic-based algorithms. The IG and
SS algorithms presented by Lin et al. (2013) and Naderi and Ruiz
(2014) are recognized as the most efficient and effective
approaches among existing heuristic-based algorithms developed
for solving the distributed FSP. Moreover, a review of the articles
cited in this paragraph indicates that because of their
polynomial-time complexity, the agent-based algorithms and the
heuristic-based algorithms are more practical than the exact meth-
ods for solving large distributed scheduling problems, such as
those that appear in numerous real-life situations.

Numerous heuristic-based algorithms have been proposed for
solving the no-wait FSP (NFSP), because of the problem’s theoreti-
cal significance and application in diverse industries. The heuristic-
based algorithms available for tackling NFSP can be classified into

two main categories: constructive heuristics and meta-heuristics.
Certain efficient constructive heuristic algorithms have been pro-
posed for solving NFSPs with respect to the makespan criterion
(Framinan & Nagano, 2008; Laha & Chakraborty, 2009; Li, Wang,
& Wu, 2008; Sapkal & Laha, 2013). Moreover, several noteworthy
meta-heuristic algorithms have also been set up for minimizing
makespan in NFSPs, including simulated annealing algorithms
(Aldowaisan & Allahverdi, 2003), genetic algorithms (Li et al.,
2008), Tabu search algorithms (Grabowski & Pempera, 2005), par-
ticle swarm optimization algorithms (Pan, Tasgetiren, & Liang,
2008), differential evolution algorithms (Qian, Wang, Hu, Huang,
& Wang, 2009), and hybrid meta-heuristic algorithms
(Samarghandi & ElMekkawy, 2012; Tseng & Lin, 2010). Related
methods and their applications in NFSP have also been comprehen-
sively reviewed elsewhere (Hall & Sriskandarayah, 1996). Although
NFSPs have been widely studied during the past decades, literature
searches indicate that no study has been conducted to date on the
DFm|prmu, nwt|Cmax problem. Therefore, in this study we formulate
an MIP mathematical model for solving the DFm|prmu, nwt|Cmax

problem. Because of this problem’s computational complexity,
we also develop an ICG algorithm that is extremely efficient and
effective when used for solving large benchmark instances of this
problem.

3. MIP mathematical model

This section presents an MIP mathematical model for solving
the DFm|prmu, nwt|Cmax problem. This MIP formulation is similar
to a model introduced by Naderi and Ruiz (2010), who addressed
the distributed permutation flowshop scheduling problem. To sim-
plify the exposition of the mathematical model, the following nota-
tions are defined.

� n: Number of jobs.
� m: Number of machines.
� f: Number of factories.
� i: Index of machines, i e {1, 2, . . . ,m}.
� j: Index of jobs, j e {1, 2, . . . , n}.
� k: Index of job positions in a given sequence, k e {1, 2, . . . , n}.
� l: Index of factories, l e {1, 2, . . . , f}.
� pj,i: Processing time of Job j at Machine i.

The MIP mathematical model involves the following decision
variables.

� Xj;k;l ¼ 1; if Job j occupies Position k in Factory l
0; otherwise

�
.

� Ck,i,l = Completion time of the job in Position k on Machine i of
Factory l.
� Cmax = Maximal completion time among all the factories.

The objective function is:

Min Cmax ð1Þ
The constraints are:

Ck;i;l ¼ Ck;i�1;l þ
Xn

j¼1
Xj;k;l � pj;i; 8k; i > 1; l; ð2Þ

Ck;i;l P
Xn
j¼1

Xj;k;l � pj;i; 8k; i ¼ 1; l; ð3Þ

Ck;i;l P Ck�1;i;l þ
Xn
j¼1

Xj;k;l � pj;i; 8k > 1; i; l; ð4Þ
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