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a b s t r a c t

The fixed charge network flow (FCNF) problem is a classical NP-hard combinatorial problem with wide
spread applications. To the best of our knowledge, this is the first paper that employs a statistical learning
technique to analyze and quantify the effect of various network characteristics relating to the optimal
solution of the FCNF problem. In particular, we create a probabilistic classifier based on 18 network
related variables to produce a quantitative measure that an arc in the network will have a non-zero flow
in an optimal solution. The predictive model achieves 85% cross-validated accuracy. An application
employing the predictive model is presented from the perspective of identifying critical network compo-
nents based on the likelihood of an arc being used in an optimal solution.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fixed charge network flow problem (FCNF) can be easily
described as follows. For a given network, each node may have a
supply or demand commodity requirement and each incident arc
have variable and/or fixed costs associated with commodity flow.
The aim of the FCNF is to select the arcs and assign feasible flow
to them in order to transfer commodities from supply nodes to
demand nodes at a minimal total cost. The transportation problem
(Balinski, 1961; El-Sherbiny & Alhamali, 2013), lot sizing problem
(Steinberg & Napier, 1980), facility location problem (Aikens,
1985; Daskin, 1995), network design problem (Costa, 2005;
Ghamlouche, Crainic, & Gendreau, 2003; Lederer & Nambimadom,
1998) and others (Armacost, Barnhart, & Ware, 2002; Jarvis,
Rardin, Unger, Moore, & Schimpeler, 1978) can be modeled as a
FCNF.

The FCNF problem is known to be NP-hard (Guisewite &
Pardalos, 1990). A significant amount of effort has been invested
to study and develop efficient approaches to the FCNF. Many
techniques commonly utilize branch and bound to search for an
exact solution to the FCNF (Barr, Glover, & Klingman, 1981; Cabot
& Erenguc, 1984; Driebeek, 1966; Hewitt, Nemhauser, &
Savelsbergh, 2010; Kennington & Unger, 1976; Ortega & Wolsey,
2003; Palekar, Karwan, & Zionts, 1990). Branch and bound however
may be inefficient due to lacking tight bounds during the linear

relaxation step. Heuristic approaches to find the near-optimal solu-
tion of the FCNF have generated considerable research interest
(Adlakha & Kowalski, 2010; Antony Arokia Durai Raj, 2012;
Balinski, 1961; Kim & Pardalos, 1999; Molla-Alizadeh-Zavardehi,
Hajiaghaei-Keshteli, & Tavakkoli-Moghaddam, 2011; Monteiro,
Fontes, & Fontes, 2011; Sun, Aronson, McKeown, & Drinka, 1998).
State-of-the-art MIP solvers combine a variety of cutting plane
techniques, heuristics and the branch and bound algorithm to find
the global optimal solution. Modern MIP solvers use preprocessing
methods to reduce the search space by taking information from the
original formulations, which significantly accelerate the solving
processes (Bixby, Fenelon, Gu, Rothberg, & Wunderling, 2000). In
this paper, we take a decidedly different approach to leveraging
information from the problem formulation and FCNF instances.
That is, we are interested in gaining information about how the var-
ious topological and component characteristics relate to the selec-
tion of arcs used to transmit the optimal flow. At this time, we
have found no literature that approaches a study of the FCNF prob-
lem from the perspective of statistical learning.

FCNF formulations are useful in many practical problems. Mod-
ern societies are heavily dependent on distributed systems, e.g.
communication networks (Cohen, Erez, Ben-Avraham, & Havlin,
2000), electric power transmission networks (Dobson, Carreras,
Lynch, & Newman, 2007), and transportation networks (Zheng,
Gao, & Zhao, 2007). Designing and maintaining such systems is an
important research area in network science. In particular, develop-
ing resilient network infrastructures (i.e., resilient with respect to
natural disasters or intentional attacks) is of utmost importance
and the ability to identify critical components in complex networks
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has reached a level of national urgency (Birchmeier, 2007). The
destruction or damage of one or more critical components in a
networked system could have significant consequences in terms
of overall system performance (Bell, 2000; Smith, Qin, &
Venkatanarayana, 2003). The definition of component criticality is
often associated with an overall network performance metric. A
component whose hypothetical failure most impacts the network
performance level is identified as critical. A substantial body of
work using a variety of methods has focused on identifying critical
components within networks, e.g. topological approach (Bompard,
Napoli, & Xue, 2009; Crucitti, Latora, &Marchiori, 2005), simulation
(Eusgeld, Kröger, Sansavini, Schläpfer, & Zio, 2009), optimization
(Bier, Gratz, Haphuriwat, Magua, & Wierzbicki, 2007; Shen, Smith,
& Goli, 2012; Zio, Golea, & Rocco, 2012), service measure
(Dheenadayalu, Wolshon, & Wilmot, 2004; Scott, Novak,
Aultman-Hall, & Guo, 2006) and graph theory (Demšar,
Špatenková, & Virrantaus, 2008). In this study we consider an appli-
cation of our statistical model with respect to identifying critical
components wherein the minimum total commodity routing cost,
inclusive of fixed costs, is the overall network performance metric.

To the best of our knowledge no existing work has developed
models to help characterize predictive network features of optimal
solutions to the FCNF. More broadly, little work has been published
so far in the application of statistical learning to traditional opti-
mization or network problems. Rocco and Muselli (2004, 2005)
developed a decision tree and a hamming clustering model to pre-
dict network connectivity reliability in graphs. Hamming cluster-
ing is applicable only if both the predicted value and all
predictors are binary (Muselli & Liberati, 2002). The binary predic-
tions relating to connectivity were made based on a single type of
predictor – the status of each arc in the graph as either failed or
operating. Based on this information they attempted to evaluate
the reliability of origin-destination connectedness. Empirically
they create one network instance (11 nodes, 21 edges) and ran-
domly sample from the possible state space of edge failures.
Among the possible 221 states, 2000 were assigned to a training
set and 1000 assigned to a test set. The models were developed
on the 2000 training observations and highly accurate predictions
were observed on the test set. While the predictive models devel-
oped were highly accurate, they are inherently linked to the single
network instance considered.

In this study we employ a statistical learning technique to ana-
lyze the data associated with optimal FCNF solutions and we
develop a relatively generalizable model based on several salient
network features to predict which arcs will be used in an optimal
solution. By solving thousands of generated FCNF instances we col-
lect over 60,000 observations and develop a logistic regression
model based on the dataset. This model allows us to quantify the
influence of several important network characteristics. The result-
ing model has several potential applications. In this study, we
demonstrate an application for providing an alternative approach
to identifying critical network components. The remainder of this
paper is organized as follows. Section 2 introduces the background
of the FCNF and the logistic regression model. The process for
developing the predictive model is discussed in Section 3. The
identification of critical components using the model is presented
in Section 4. Section 5 summarizes the results and introduces
planned future work.

2. Background

2.1. Fixed charge network flow problem

The fixed charge network flow (FCNF) problem is described on a
network G ¼ ðN;AÞ, where N and A are the set of nodes and arcs,

respectively. Let cij and f ij denote the variable and fixed cost of
arc ði; jÞ 2 A, respectively. Each node i 2 N has a commodity
requirement ri associated with it (if it is a supply node, ri > 0; if
a demand node, ri < 0; if a transshipment node, ri ¼ 0). An arc
parameter Mij is used in the problem formulation to ensure that
the fixed cost f ij is incurred whenever there is a positive flow on
arc ði; jÞ 2 A. There are two decision variable types: yij which
denotes the decision variable to use arc ði; jÞ 2 A in a solution and
xij denotes the commodity flow on ði; jÞ. The mathematical formu-
lation is as follows,

min
X
ði;jÞ2A

ðcijxij þ f ijyijÞ ð1Þ

s:t:
X
ði;jÞ2A

xij �
X
ðj;iÞ2A

xji ¼ ri 8i 2 N ð2Þ

0 6 xij 6 Mijyij 8ði; jÞ 2 A ð3Þ
yij 2 0;1f g 8ði; jÞ 2 A ð4Þ

Constraint (2) ensures that the inflow and outflow satisfy the
supply/demand at node i 2 N. The parameter Mij in constraint (3)
is either the associated arc flow capacity or an artificial arc capacity
(for uncapacitated problems). The constraint ensures that the flow
on arc ði; jÞ 2 A can be positive only when the arc ði; jÞ 2 A is open
(yij ¼ 1). If arc ði; jÞ does not have a capacity, Mij should be set to
a value which is large enough to not inhibit the optimal flow. All
problems in this study are uncapacitated and each Mij is set to
the total supply in the network. Constraint (4) defines yij as binary,
which makes the problem a 0–1 mixed integer programming
problem.

2.2. Logistic regression

Logistic regression is a widely-used technique for classification
modeling and is commonly used in business modeling, data mining
applications, biological fields, and others (Camdeviren, Yazici,
Akkus, Bugdayci, & Sungur, 2007; Hosmer, Lemeshow, &
Sturdivant, 2013; Menard, 2002). While there are many classifica-
tion modeling techniques (e.g., support vector machines, random
forests, boosted trees), logistic regression has an advantage regard-
ing model interpretability. Decision trees which are also easy to
interpret have a drawback in that they are often unstable. That
is, the rules generated by a decision tree are highly sensitive to
the instance of training data (Friedman, Hastie, & Tibshirani,
2001). Given that we are interested in analyzing data to under-
stand the characteristics of optimal FCNF solutions, interpretability
and stability are important.

We denote the dependent variable (also called a response vari-
able) as Y and define it as follows,

Y ¼ 1; arc has positive flow in the FCNF optimal solution
0; otherwise:

�

The logistic regression function produces a probability that the
response variable equals 1 given the data values observed for the
associated k predictor variables, p1; . . . ; pk,

PðY ¼ 1jp1; . . . ; pkÞ ¼
1

1þ e� b0þ
Pk

i¼1
bipi

� � ð5Þ

where the parameters b1; . . . ;bk are regression coefficients deter-
mined using maximum likelihood estimation during the modeling
process. For a given set of observed values, the binary response vari-
able is set to 1 if the predicted probability exceeds a cut-off point.
The details for setting the cut-off value are discussed in Section 3.4.

The b values in a logistic regression model are interpreted sim-
ilar to linear regression, in that, they represent partial slopes
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